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predicting lncRNA–disease associations 
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Abstract— A growing amount of evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the regulation 

of biological processes in many human diseases. However, the number of experimentally verified lncRNA-disease associations 

is very limited. Thus, various computational approaches are proposed to predict lncRNA-disease associations. Current matrix 

factorization-based methods cannot capture the complex non-linear relationship between lncRNAs and diseases, and traditional 

machine learning-based methods are not sufficiently powerful to learn the representation of lncRNAs and diseases. Considering 

these limitations in existing computational methods, we propose a deep matrix factorization model to predict lncRNA-disease 

associations (DMFLDA in short). DMFLDA uses a cascade of non-linear hidden layers to learn latent representation to represent 

lncRNAs and diseases. By using non-linear hidden layers, DMFLDA captures the more complex non-linear relationship between 

lncRNAs and diseases than traditional matrix factorization-based methods. In addition, DMFLDA learns features directly from 

the lncRNA-disease interaction matrix and thus can obtain more accurate representation learning for lncRNAs and diseases 

than traditional machine learning methods. The low dimensional representations of the lncRNAs and diseases are fused to 

estimate the new interaction value. To evaluate the performance of DMFLDA, we perform leave-one-out cross-validation and 5-

fold cross-validation on known experimentally verified lncRNA–disease associations. The experimental results show that 

DMFLDA performs better than the existing methods. The case studies show that many predicted interactions of colorectal 

cancer, prostate cancer, and renal cancer have been verified by recent biomedical literature. 

Index Terms—Deep learning, matrix factorization, lncRNA-disease associations, non-linear features.  

——————————      —————————— 

1 INTRODUCTION

ith the rapid development of sequencing technology, 
researchers have discovered a fact that more than 98% 

of the human genome does not encode protein sequences 
[1]. Further studies indicate that lots of non-coding RNAs 
(ncRNAs) play critical roles in various fundamental and 
important biological processes [2-7]. NcRNAs can be di-
vided into small ncRNA and long ncRNA based on the 
length of nucleotides [8]. Long non-coding RNAs 
(lncRNAs) have more than two hundred nucleotides and 
are a very important class of ncRNAs [9-11]. More and 
more evidence indicates that lncRNAs have very close 
associations with many human diseases such as breast 
cancer, lung cancer, and Alzheimer's disease. For example, 
lncRNA ‘H19’ not only has great effects on primary breast 
carcinomas [12, 13] but also confirmed to be associated 
with lung cancer [14]. The expression of lncRNA ‘BACE1-
AS’ drives rapid feed-forward regulation of b-secretase in 
Alzheimer's disease [15]. Thus identification of potential 
lncRNA–disease associations is of great significance in 
biology, which can help understand the disease mecha-
nism at the lncRNA level. 

 Considering the huge cost of traditional biological ex-
periments, various computational methods have been 
developed to predict potential lncRNA–disease associa-
tions. These methods can be divided into three categories. 
The first category is based on machine learning methods. 
Chen et al. constructed a semi-supervised learning 
framework called LRLSLDA to predict potential disease-
related lncRNAs [16]. LRLSLDA integrates the known 
disease–lncRNA associations and lncRNA expression 
profiles and utilizes Laplacian regularized least squares to 
optimize the objective function. Zhao et al. applied a na-
ive Bayesian classifier to predict cancer-related lncRNAs 
by integrating genomic, miRNA targets and expression 
features [17]. Lan et al. used a bagging SVM to predict 
potential lncRNA-disease associations by fusing lncRNA 
similarity and disease similarity [18]. Fu et al. proposed a 
matrix factorization based model named MFLDA to pre-
dict lncRNA-disease associations [19]. Lu et al. used an 
inductive matrix completion model called SIMCLDA to 
predict lncRNA-disease associations [20]. The second cat-
egory is based on biological networks. Sun et al. con-
structed a lncRNA–lncRNA functional similarity network 
and used the random walk technique to predict lncRNA–
disease associations [21]. Yao et al. used a multi-level 
composite network to prioritize candidate lncRNAs asso-
ciated with diseases by integrating genes, lncRNAs, phe-
notypes, and interactions [22]. Chen et al. applied the 
model of KATZ measure to predict lncRNA-disease asso-
ciations by integrating known lncRNA-disease associa-
tions, lncRNA expression profiles, lncRNA functional 
similarity, disease semantic similarity, and Gaussian in-
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teraction profile kernel similarity [23]. Zhou et al. inte-
grated three networks (lncRNA–lncRNA crosstalk net-
work, disease–disease similarity network and known 
lncRNA–disease association network) into a heterogene-
ous network and applied the random walk technique to 
predict lncRNA-disease associations [24]. Zhang et al. 
used a flow propagation algorithm to integrate multiple 
networks based on lncRNA similarity, protein-protein 
interactions, disease similarity, and the associations to 
predict lncRNA-disease associations [25]. The third cate-
gory is not based on known lncRNA–disease associations. 
The above two types of methods used the known 
lncRNA–disease associations. However, known experi-
mentally verified associations are quite small. Thus some 
researchers used the other biological information to pre-
dict lncRNA–disease associations. Liu et al. combined 
human lncRNA expression profiles, gene expression pro-
files, and human disease-associated gene data to propose 
a computational framework [26]. Chen integrated 
miRNA-disease associations and lncRNA-miRNA interac-
tions to predict lncRNA-disease associations [27]. 

 In recent years, deep learning methods have been suc-
cessfully applied in various fields including computer 
vision, natural language processing and bioinformatics 
[28-35]. Inspired by their success, we propose a deep ma-
trix factorization framework called DMFLDA to automat-
ically predict lncRNA-disease associations only using 
lncRNA-disease interaction matrix. The basic idea of deep 
matrix factorization model [36, 37] is to treat prediction of 
lncRNA-disease associations as a recommendation sys-
tem problem and use a cascade of non-linear hidden lay-
ers to learn a latent low dimensional space to represent 
the lncRNAs and diseases. Then the low dimensional rep-
resentations of lncRNAs and diseases are fused to esti-
mate new interaction values. There are two advantages of 
using a deep matrix factorization model. First, compared 
with traditional matrix factorization-based methods, deep 
matrix factorization model can learn the non-linear, more 
complex relationships between lncRNAs and diseases. As 
we know, traditional matrix factorization methods can 
only capture the linear relationship between lncRNAs 
and diseases. However, the relationship between 
lncRNAs and diseases are too complicated, such complex 
relationships can be difficult to characterize with linear 
models. Second, compared with traditional machine 
learning-based methods (support vector machine, naïve 
Bayes, etc.), the deep matrix factorization model is more 
powerful to represent the features of lncRNAs and dis-
eases. Feature extraction directly from the lncRNA-
disease interaction matrix can obtain more accurate rep-
resentation learning for lncRNAs and diseases than tradi-
tional machine learning methods. Although traditional 
machine learning methods have obtained good results, 
there is room for improvement. A powerful deep learn-
ing-based model can help us better predict lncRNA-
disease interactions.  

  In this study, we only use lncRNA-disease interac-
tions to construct a deep matrix factorization model. A lot 
of biological information, such as disease similarity, 

lncRNA similarity, and lncRNA expression profiles, are 
useful for the prediction of lncRNA-disease interactions, 
while a lot of lncRNAs do not have such information. In 
addition, there are many different methods for measuring 
disease and lncRNA similarity, such as Pearson, Spear-
man, and Jaccard similarity coefficient. The commonly 
used method for the similarity coefficient selection is 
based on the results of statistical methods and machine 
learning methods. As a result, it is difficult to explain why 
this similarity coefficient was used instead of that one. We 
thus focus on lncRNA-disease interactions, which are 
wildly used in various studies. 

  To evaluate the performance of our model, we carry 
out extensive experiments on a preprocessed gold stand-
ard dataset. The experimental results show that DMFLDA 
reaches the AUC values of 0.8393 and 0.8288 in leave-one-
out cross-validation and 5-fold cross-validation, respec-
tively, which outperform other computational methods 
including SIMCLDA [20], MFLDA [19], TPGLDA [38], 
and LDAP [18]. In order to further evaluate the capability 
of DMFLDA, we conduct case studies for three types of 
cancers including colorectal cancer, prostate cancer, and 
renal cancer. Case studies show that 22 out of 30 (8 for 
colorectal cancer, 7 for prostate cancer and 7 for renal 
cancer) cancer-related lncRNAs predicted by DMFLDA 
are verified by manually mining recent biomedical litera-
ture. These findings show the capability of DMFLDA for 
predicting potential lncRNA–disease associations. 

2 METHODS 

2.1 Problem definition 

Given M lncRNAs R = {r1, r2, r3,…, rm}, N diseases D = {d1, 
d2, d3,…, dn}. We define the lncRNA–disease interaction 
matrix by R∈Rm×n based on known lncRNA–disease as-
sociation datasets. We construct the interaction matrix as 
follows. 

     
                                               
                                          

        (1) 

The purpose of lncRNA–disease association prediction 
is predicting the score of unknown relationship in interac-
tion matrix R by using known lncRNA–disease associa-
tions. There are a lot of zero entries in this interaction ma-
trix R, the true interactions we already know only ac-
counts for a small percentage. The sparsity of interaction 
information brings great challenges to our prediction.  

2.2 Traditional matrix factorization 

Given a partially observed matrix R∈Rm×n, U and V de-
note two matrices which have dimensionality of m×d and 
n×d, respectively. In general, matrix R is sparse and d is 
much smaller than m and n. The crucial step of traditional 
matrix factorization is the decomposition of the partially 
observed matrix R into matrices U and V. Then the prod-
uct UVT can closely reconstruct the interaction matrix R. 
A new estimate at the (i, j) position of interaction matrix R 
is predicted as follows: 

   
    

     
                                              (2) 
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where    
    

 denotes a new estimate,    and     represent 
the latent factor of U and V, respectively. Figure 1 gives 
the illustration of matrix factorization. The solution of 
matrix factorization is obtained by minimizing the regu-
larized loss function on the data: 

                  
    

        
      

 
             (3) 

where   denotes the known observed interactions of R, 
the constant λ is a parameter to adjust the weight between 
empirical risk and the regularized term.  

 2.3 Deep Matrix Factorization Model 

In our previous study [20], we formulated lncRNA–
disease association prediction as a recommendation sys-
tem problem. In recent years, deep learning technology 
has been successfully and widely used in various fields, 
such as image classification, natural language processing, 
and speech recognition. In addition, some researchers 
began to explore how to apply the deep learning tech-
niques to the matrix factorization framework. Inspired by 
their work, we construct a deep matrix factorization 
model to predict lncRNA–disease associations. Figure 2 
gives a schematic view of our deep matrix factorization 
model.  

In our deep matrix factorization model, each lncRNA is 

represented as a row of the interaction matrix, which de-

scribes the lncRNA’s interaction across all diseases. Each 

disease is represented as a column of the interaction matrix, 

which describes the disease’s interaction across all lncRNAs. 

The rows and columns of the interaction matrix are consid-

ered to be lncRNA’s and disease’s feature vector. The input 

layer of the model consists of two feature vectors, lncRNA 

and disease feature vectors. Here we need to mention a de-

tail. In the interaction matrix, the intersection of a row and a 

column are considered the label of a sample in supervised 

learning. Thus we cannot directly use the label in the feature 

vector to represent lncRNAs and diseases. To solve the 

problem, we mask the value of the intersection and replace it 

with 0. Then the two feature vectors are fed into two fully 

connected layers that project the sparse representation to 

dense representation. The obtained lncRNA and disease vec-

tors can be seen as the latent vectors for a lncRNA and a 

disease. Then we fuse a pair of lncRNA and disease latent 

vectors to a new vector which is fed into a fully connected 

layer with a sigmoid activation function to perform predic-

tion task. Formally, x and y denote the lncRNA and disease 

input vectors, respectively.    ,    ,    ,     are weight 

matrices and    ,    ,    ,     are bias terms of each inter-

mediate fully connected layer,    ,    ,    ,     represent 

the outputs of each intermediate fully connected layer. The 

ReLU function is used as the activation function of each 

intermediate fully connected layer. 

                                                      (4) 

The outputs of the first fully connected layer are: 

                                                    (5) 

                                                    (6) 

Our deep matrix factorization model has two fully con-

nected layers that transform the raw representation of 

lncRNAs and diseases to the latent dense representation of 

lncRNAs and diseases. Through the neural network, the la-

tent dense vectors of lncRNAs and diseases are: 

                                       (7) 

                                        (8) 

Then we use element-wise multiplication to fuse the latent 

dense vectors of a lncRNA and a disease into a new vector: 

                                                   (9) 

Element-wise multiplication is a standard operation which 

on each element of vectors while doing multiplication. For 

example, if V1 = [1 2 3] and V2 = [5 6 2], then multiply two 

vectors by multiplying all of the corresponding elements. 

The result w is:  

                                                  (10) 

The new vector is fed into a fully connected layer with a 

sigmoid activation function to perform the prediction task. 

           
 

          
                              (11) 

                                                 (12) 

To learn the parameters in our deep matrix factorization 

model, we use a binary cross-entropy loss function as the 

loss function. The binary cross-entropy loss function is the 

most widely used loss function in classification. Its optimi-

zation can be done by performing adaptive moment estima-

tion (Adam). 

Figure 1. Illustration of the decomposition of matrix R into matrices U and V
T
. 

Authorized licensed use limited to: Central South University. Downloaded on April 17,2020 at 06:51:16 UTC from IEEE Xplore.  Restrictions apply. 



1545-5963 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCBB.2020.2983958, IEEE/ACM Transactions on Computational Biology and Bioinformatics

4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

                                       

                 (13) 

where θ is the weight vector, the regularization parameter λ 

is a parameter to adjust the weight between empirical risk 

and the regularized term.  

It should be noted that the prediction of lncRNA–disease 

associations by using a deep matrix factorization model is a 

classification problem. As previously mentioned, the 

lncRNA–disease interaction matrix has two types of values, 

1 and 0. We can view the value of 1 as a label of positive 

instance, and 0 as a label of negative instance. This matrix is 

very sparse for it has a lot of values of 0 and a few of values 

of 1. If we use all values of 0 for training, then the prediction 

of lncRNA–disease associations will become an extremely 

imbalanced learning problem due to the fact that the number 

of unobserved instances is far more than the number of 

known instances [39]. Thus we need to sample some nega-

tive instances from unobserved data for training. We apply a 

sampling method to our model and the basic idea of the 

sampling method is to use a balanced set of positive and 

negative instances to update parameters of the model in each 

epoch [40, 41]. Such a sampling method ensures that our 

model does not bias toward the positive or negative instanc-

es in each training epoch. We denote the set of known inter-

actions by   , the set of all unobserved interactions by   . 

     
  denotes the subset of negative instances which are 

sampled from    in each epoch. We keep the number of 

random chosen negative instances is equal to the number of 

positive instances in   . In each epoch,         
  consti-

tute the training dataset and we use the training dataset to 

update the parameters on our model. 

3 EXPERIMENTAL RESULTS 

3.1 Data sources 

In this study, we retrieve known lncRNA-disease associa-
tions from LncRNADisease [42], GeneRIF [43] and 
Lnc2Cancer [44]. After checking names of lncRNAs (ac-
cording to Lncipedia, lncrnadb, HGNC, and NCBI) and 
diseases (according to Mesh, UMLS and NCBI), we re-
move all the repeating records and all the entries of other 
organisms. The statistics of the processed dataset are 
shown in Table 1. 

 
TABLE 1. 

STATISTICS OF THE DATASET WE USED IN THE STUDY. 

 

3.2 Evaluation metrics 

To evaluate the performance of deep matrix factorization 
model and other methods in predicting lncRNA–disease 
associations, leave-one-out cross-validation (LOOCV) and 
5-fold cross-validation (5-fold CV) are applied to our 
study as previously used in other studies. We use 
LOOCV on the known lncRNA–disease associations. Spe-
cifically: in each turn, for a given disease   , each known 
lncRNA associated to    is chosen as the test sample, and 
the other known lncRNA–disease associations and the 
same number of random sampled unknown lncRNA–
disease associations are combined as the training dataset. 
A 5-fold CV is used to evaluate the capability of a model 
to predict potential associations. In the 5-fold CV, at each 

Dataset 
# of 

lncRNAs 
# of 

diseases 
# of inter-

actions 
Interaction 

density 

 577 272 1583 1.008% 

Figure 2. Illustration of our proposed deep matrix factorization model for prediction of lncRNA–disease associations. The red vector in 
interaction matrix is used to indicate lncRNA i’s vector and the blue vector in interaction matrix is used to indicate disease j’s vector. 
The two vectors are fed into two different networks to extract latent feature of them. The element-wise multiplication is applied to fuse 
the outputs of the two different networks and the result is represented by the purple vector. A sigmoid activation function is applied to 
the purple vector for classification. 
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turn, the known lncRNA-disease associations are divided 
into five subsets, four of which are used for training and 
the remaining one is used for testing. 

After the training step, we can use our model to obtain 
all the new values of the interaction matrix. Then we cal-
culate the true positive rate (TPR) and false positive rate 
(FPR): 

    
  

     
                                           (14) 

where TP represents the number of positive samples identi-
fied correctly and FN denotes the number of positive sam-
ples identified incorrectly. 

    
  

     
                                           (15) 

where FP represents the number of negative samples identi-
fied incorrectly and TN denotes the number of negative 
samples identified correctly. 

The receiver operating characteristic (ROC) curve is 
drawn to illustrate the performances of models. It plots 
the TPR against the FPR at various threshold settings.  
AUC is defined as the area under the ROC curve. In gen-
eral, a classifier that provides a larger AUC shows it has 
better performance.  

3.3 Implementation details 

We implement DMFLDA in Tensorflow which is a public-
ly available deep learning library developed by Google 
[45]. We use a row of the interaction matrix as an input 
vector of a lncRNA and a column of the interaction matrix 
as an input vector of a disease. For the intersection of a 
row and a column, we mask the value and replace it with 
0. We use two fully connected layers to extract the latent 
features of lncRNAs and diseases. The number of neurons 
in the first fully connected layer is 48 and in the second 
layer is 32. Thus the dimension of latent vector of the 
lncRNAs and diseases is 32. We use element-wise multi-
plication to fuse them to a new vector which is also a 32-
dimensional vector. The non-linear activation function is 

the ReLU function. Dropout rate of 0.05 is used on each 
fully connected layer in the network to avoid overfitting. 
The regularization parameter λ in loss function is set to 
0.001. Weights in DMFLDA are initialized using the 
Gaussian distribution (with a mean of 0 and standard 
deviation of 0.01). The Adam optimizer is applied to train 
DMFLDA, the initial learning rate is set to 0.0005, and the 
batch size is set to 32. In the training process, we random-
ly sample one known lncRNA-diseases interactions as the 
validation data to evaluate the performance of DMFLDA.  

3.4 Comparison with other methods 

3.4.1 Compared methods 

To evaluate the performance of DMFLDA in predicting 
lncRNA–disease associations, we compare DMFLDA 
with 4 popular computational methods (SIMCLDA, 
MFLDA, TPGLDA, and LDAP). SIMCLDA was devel-
oped by Lu et al., and based on inductive matrix comple-
tion [20]. SIMCLDA finds a low-rank matrix that can in-
tegrate prior knowledge of lncRNAs and diseases to 
complete the lncRNA–disease association matrix. MFLDA 
was developed by Fu et al., which decomposes data ma-
trices of heterogeneous data sources into low-rank matri-
ces via matrix tri-factorization to explore and exploit their 
intrinsic and shared structure [19]. TPGLDA was devel-
oped by Ding et al., which integrates gene-disease associ-
ations with lncRNA-disease associations and uses an ef-
fective resource allocation algorithm to predict potential 
lncRNA-disease associations [38]. LDAP was developed 
by Lan et al., which uses a bagging SVM to predict poten-
tial lncRNA-disease associations by fusing lncRNA simi-
larity and disease similarity [18]. 

3.4.2 Results 

We compared DMFLDA with 4 popular computational 
methods by using two kinds of evaluation methods 
(LOOCV and 5-fold CV). Figure 3a shows the ROC curves 
of DMFLDA and other compared methods in the LOOCV. 

Figure 3. Comparison of performances obtained by DMFLDA and other computational methods in the LOOCV. (a) The ROC 

curves of DMFLDA and other compared methods. (b) Ratios of correctly retrieved known lncRNA–disease associations for speci-

fied rank thresholds. 
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We can see that the ROC curve of DMFLDA is significant-
ly higher than other methods. The AUC obtained by 
DMFLDA is 0.8393, which is better than SIMCLDA 
(0.7996), TPGLDA (0.7524), MFLDA (0.7074) and LDAP 
(0.6415). Our results indicate that our method exhibits 
extremely high accuracy. Furthermore, we evaluate the 
numbers of correctly retrieved lncRNA–disease associa-
tions. Specifically, each predicted association has a re-
sponding rank, if the rank higher than a specified rank 
threshold k, and then we regard it as a correctly retrieved 
association. Figure 3b shows the histograms of DMFLDA 
and other competing methods in the LOOCV. In top 50 
(k=50), DMFLDA is slightly lower than SIMCLDA and 
TPGLDA, but higher than MFLDA and LDAP. In top 100, 
150, and 200, we can see that DMFLDA can find more 
correct associations than other methods. Considering that 
we use less biological information than other methods, 
DMFLDA obtains good results actually. Figure 4a shows 
the ROC curves of DMFLDA and other compared meth-
ods in the 5-fold CV. Figure 4b shows the histograms of 
DMFLDA and other competing methods in the 5-fold CV. 
From Figure 4a, we can see that the ROC curve of 
DMFLDA is significantly higher than other methods. 
From Figure 4b, we can see that DMFLDA can find more 
correct associations than other methods. Overall, 
DMFLDA outperforms the other computational methods 
in the LOOCV and 5-fold CV.  
 

3.5 The effects of hyper-parameters 

In our model, some hyper-parameters, such as the num-
ber of neurons in each fully connected layer and the regu-
larization parameter λ in the loss function, have different 
effects on experimental performance. To obtain the best 
performance of DMFLDA, we have tried a set of different 
hyper-parameters of network architectures to find the 
best hyper-parameters for predicting lncRNA-disease 
interactions. 

3.5.1 The effects of the number of neurons in the 
last fully connected layer 

The number of neurons in each fully connected layer is a 
sensitive parameter in our model, especially the last fully 
connected layer. The number of neurons in the last fully 
connected layer represents the dimension of the latent 
vector of lncRNAs and diseases and is very important for 
predicting lncRNA-disease interactions. However, it takes 
a lot of time to do experiments of different combinations 
of the hyper-parameters with LOOCV. For simplicity, we 
only compare the performance with different numbers of 
neurons in the last fully connected layer. The number of 
neurons in the first layer is set to 48. We change the num-
ber of neurons in the last layer from 8 to 48 (8, 16, 32 and 
48) to find the best parameter. The results are shown in 
Table 2, the last layer with 32 neurons obtains the best 
performance.  
 

TABLE 2. 
AUC FOR MODELS WITH DIFFERENT NEURONS OF THE LAST 

FULLY CONNECTED LAYER. 

 
TABLE 3. 

 AUC FOR MODELS WITH DIFFERENT PARAMETER. 

 

3.5.2 The effects of λ 

The regularization parameter λ in the loss function is a 
trade-off parameter to adjust the weight between the em-
pirical risk and the regularized term. In the loss function, 
we want to fit the training data well by using the empiri-
cal risk and keep the parameters of the deep learning 

# of neurons 8 16 32 48 

AUC 0.8173 0.8310 0.8393 0.8385 

λ 0.0001 0.0003 0.001 0.003 0.01 0.03 

AUC 0.8317 0.8389 0.8393 0.8313 0.8278 0.8211 

Figure 4. Comparison of performances obtained by DMFLDA and other computational methods in the 5-fold CV. (a) The ROC 

curves of DMFLDA and other compared methods. (b) Ratios of correctly retrieved known lncRNA–disease associations for speci-

fied rank thresholds. 
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model small by using the regularized term. Parameter λ 
controls the trade-off between the two terms and is a sen-
sitive parameter in our model. The number of neurons in 
each fully connected layer is set to 48 and 32, respectively. 
We train our model with the different parameters of 
0.0001, 0.0003, 0.001, 0.003, 0.01 and 0.03 for λ to find the 
best parameter with LOOCV. We show our results in 

Table 3 and find the best performance is obtained when λ 
is 0.001.  
 

3.6 Case studies 

In order to further evaluate the capability of DMFLDA, 
we conduct case studies for three kinds of important can-
cers including colorectal cancer, prostate cancer, and re-

TABLE 4. 
DMFLDA PREDICTED LNCRNAS ASSOCIATED WITH COLORECTAL CANCER (TOP 10) WITH THE CORRESPONDING REFER-

ENCES. 

lncRNA Reference Rank Description 

SPRY4-IT1 Cao et al. (2016) 1 Long noncoding rna SPRY4-IT1 promotes malignant development of colo-
rectal cancer by targeting epithelial–mesenchymal transition. 

CDKN2B-
AS1 

Chen et al. 
(2016) 

2 See Table 1 in Ref Chen et al. (2016). 

GAS5 Li et al. (2017) 3 Long non-coding RNA GAS5 acts as a tumour suppressor in colorectal 
cancer by inhibiting interleukin-10 and vascular endothelial growth fac-

tor expression. 
KCNQ1OT1 Zhang et al. 

(2018) 
4 While Sunamura et al. have demonstrated that beta-catenin can bind to 

KCNQ1OT1 promotor and activate its transcription in colon cancer 
cells. 

BANCR Su et al. (2015) 5 LncRNA BANCR is abnormally expressed in non-small cell lung can-
cer, melanoma, and colorectal cancer compared. 

SNHG16 Christensen et 
al. (2016) 

6 SNHG16 is regulated by the Wnt pathway in colorectal cancer and af-
fects genes involved in lipid metabolism. 

HULC Dong et al. 
(2019) 

7 Long non-coding RNA HULC interacts with miR-613 to regulate colon 
cancer growth and metastasis through targeting RTKN. 

Sox4 Lin et al. (2013) 8 Clinical and prognostic implications of transcription factor SOX4 in 
patients with colon cancer. 

IGF2-AS Unknown 9 N/A 

NBAT1 Unknown 10 N/A 

 
TABLE 5. 

DMFLDA PREDICTED LNCRNAS ASSOCIATED WITH PROSTATE CANCER (TOP 10) WITH THE CORRESPONDING REFERENCES.  

lncRNA Reference Rank Description 

UHRF1 Jazirehi et 
al. (2012) 

1 UHRF1: a master regulator in prostate cancer. 

PANDAR Unknown 2 N/A 

CCAT1 Mizrahi et 
al. (2015) 

3 CCAT1 is a 2628 nucleotide lncRNA located on chromosome 8q24.21 in an 
intergenic area described before as a “hot spot” harboring multiple genetic al-

ternations in both colon and prostate cancer. 
RN7SK Unknown 4 N/A 

XIST Du et al. 
(2017) 

5 LncRNA XIST acts as a tumor suppressor in prostate cancer through sponging 
miR-23a to modulate RKIP expression. 

TINCR Dong et al. 
(2018) 

6 LncRNA TINCR is associated with clinical progression and serves as tumor sup-
pressive role in prostate cancer. 

LINC-
ROR 

Liu et al. 
(2017) 

7 Curcumin suppresses proliferation and in vitro invasion of human prostate cancer 
stem cells by ceRNA effect of miR-145 and lncRNA-ROR. 

NPTN-
IT1 

Unknown 8 N/A 

TDRG1 Wang et al. 
(2016) 

9 The knockout of TDRG1 significantly decreased the phosphorylation levels of 
PI3K/p85, PI3K/p110, Akt, and mammalian target of rapamycin. The 

PI3K/Akt/mTOR pathway plays an important role in cell growth and survival. 
Similar findings have been reported in ovarian, colorectal, and prostate cancers. 

CRNDE Ellis et al. 
(2012) 

10 While CRNDE expression is mildly elevated in prostate cancer. 
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nal cancer. For a target cancer, we make use of the al-
ready trained model to estimate new values for those 
lncRNAs that do not have the interactions with the target 
cancer. Then we select the top 10 plausible lncRNAs as 
our predicted lncRNAs for the target cancer. After that, 
we check the top 10 plausible lncRNAs by manually min-
ing recent biomedical literature.  

Colorectal cancer, also known as colon cancer, is a great 
threat to public health, being the third most commonly di-
agnosed cancer in males and the second in females world-
wide [46]. More than 1 million new colorectal cancer cases 
were diagnosed each year since 2012. It is very important to 
find the associations between colorectal cancer and some 
lncRNAs. DMFLDA is applied to infer potential colorectal 
cancer-related lncRNAs. As a result, 8 colorectal cancer-
related lncRNAs (SPRY4-IT1, CDKN2B-AS1, GAS5, 
KCNQ1OT1, BANCR, SNHG16, HULC and Sox4) have 
been validated. LncRNA SPRY4-IT1 can promote the malig-
nant development of colorectal cancer by targeting epitheli-
al–mesenchymal transition [47]. Chen et al. pointed out that 
lncRNA CDKN2B-AS1 has been successfully experimentally 
confirmed [48]. Li et al. found that GAS5 was commonly 
downregulated in CRC tissues [49]. Zhang et al. pointed 
out that beta-catenin can bind to KCNQ1OT1 promotor 
and activate transcription in colon cancer cells [50]. 
LncRNA BANCR is abnormally expressed in colorectal 
cancer [51]. LncRNA SNHG16 is regulated by the Wnt 
pathway in colorectal cancer [52]. LncRNA HULC inter-
acts with miR-613 to regulate colon cancer growth [53]. 
Lin et al. provided evidence for the clinical significance of 
overexpressed SOX4 in patients with colon cancer [54]. We 
list these lncRNAs, their corresponding ranks and corre-
sponding references in Table 4. 

Prostate cancer is the most common malignancy among 
males worldwide [55]. It is the fourth leading cancer in both 
sexes and the second most common cancer in males. In 2012, 

about 1.1 million men worldwide with prostate cancer were 
diagnosed. DMFLDA is applied to predict potential prostate 
cancer-related lncRNAs. As a result, 7 prostate cancer-
related lncRNAs (UHRF1, CCAT1, XIST, TINCR, LINC-
ROR, TDRG1, and CRNDE) have been validated by manual-
ly mining recent biomedical literature. The results are shown 
in Table 5. Jazirehi et al. pointed out lncRNA UHRF1 is a 
master regulator in prostate cancer [56]. LncRNA CCAT1 is 
a “hot spot” harboring multiple genetic alternations in pros-
tate cancer [57]. Du et al. pointed out that LncRNA XIST acts 
as a tumor suppressor in prostate cancer through sponging 
miR-23a to modulate RKIP expression [58]. LncRNA TINCR 
is associated with clinical progression and serves as tumor 
suppressive role in prostate cancer [59]. Liu et al. found that 
curcumin suppresses proliferation and in vitro invasion of 
human prostate cancer stem cells by lncRNA LINC-ROR 
[60]. Wang et al. found that lncRNA TDRG1 can regulate the 
PI3K/Akt/mTOR pathway, which plays an important role 
in prostate cancer [61]. Ellis et al. pointed out lncRNA 
CRNDE expression is mildly elevated in prostate cancer [62]. 

Renal cancer is one of the most common cancers. In 2013, 
renal cancer was diagnosed in more than 350,000 people 
worldwide [63]. It causes more than 140,000 deaths per year. 
Accumulating evidence has shown that lncRNAs play criti-
cal roles in the development and progression of renal cancer. 
DMFLDA is applied to predict potential renal cancer-related 
lncRNAs. As a result, 7 renal cancer-related lncRNAs 
(NEAT1, MEG3, GAS5, H19, HOTAIR, AFAP1-AS1, and 
TDRG1) have been found. LncRNA NEAT1 enhances epi-
thelial-to-mesenchymal transition and chemoresistance in 
renal cell carcinoma [64]. LncRNA MEG3 induces renal cell 
carcinoma cells apoptosis [65]. LncRNA GAS5 expression 
level is significantly lower in renal cell carcinoma samples 
[66]. Wang et al. found that down-regulated lncRNA H19 
inhibits carcinogenesis of renal cell carcinoma [67]. LncRNA 
HOTAIR activates the Hippo pathway by directly binding to 
SAV1 in renal cell carcinoma [68]. Lan et al. pointed out that 

TABLE 6. 
DMFLDA PREDICTED LNCRNAS ASSOCIATED WITH RENAL CANCER (TOP 10) WITH THE CORRESPONDING REFERENCES. 

lncRNA Reference Rank Description 

NEAT1 Liu et al. 
(2017) 

1 The long non-coding rna neat1 enhances epithelial-to-mesenchymal transition 
and chemoresistance via the mir-34a/c-met axis in renal cell carcinoma. 

MEG3 Wang et al. 
(2015) 

2 Long non-coding rna meg3 induces renal cell carcinoma cells apoptosis by ac-
tivating the mitochondrial pathway.  

GAS5 Seles et al. 
(2016) 

3 Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell car-
cinoma. 

H19 Wang et al. 
(2015) 

4 Down-regulated long non-coding RNA H19 inhibits carcinogenesis of renal 
cell carcinoma. 

HOTAIR Hu et al. 
(2017) 

5 The long noncoding RNA HOTAIR activates the Hippo pathway by directly 
binding to SAV1 in renal cell carcinoma. 

AFAP1-AS1 Lan et al. 
(2017) 

6 The expression level of AFAP1-AS1 from GSE48352 was higher in papillary 
renal cell carcinoma (PRCC) than in that of normal controls (P = 0.0318). 

TUSC7 Unknown 7 N/A 

HMlincRNA717 Unknown 8 N/A 

DLEU1 Unknown 9 N/A 

TDRG1 Chen et al. 
(2018) 

10 These results suggest TDRG1 regulates cell proliferation, apoptosis and 
invasion in endometrial cancer–at least in part–by targeting VEGF-A and 
modulating the expression of proteins regulated by VEGF-A. Studies had 

already reported that the downregulation of VEGF-A inhibits proliferation, 
promotes apoptosis and suppresses migration and invasion in renal clear 

cell carcinoma cells by inhibiting PI3K/Akt expression. 
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the expression level of AFAP1-AS1 is higher in renal cell 
carcinoma than normal controls [69]. Chen et al. found that 
lncRNA TDRG1 can regulate VEGF-A protein which can 
inhibit proliferation and promote apoptosis in renal cancer 
[70]. 

In summary, 22 cancer-related lncRNAs (8 for colorectal 
cancer, 7 for prostate cancer and 7 for renal cancer) are 
checked in the recent biomedical literature. These case stud-
ies show that the potential of DMFLDA to infer novel 
lncRNAs for diseases is confirmed.  

4 CONCLUSIONS 

LncRNAs play important roles in all kinds of fundamen-
tal and important biological processes. Identifying dis-
ease-related lncRNAs is of great significance in biology 
for understanding the mechanisms of diseases at the 
lncRNA level. In this study, we propose a deep matrix 
factorization-based model DMFLDA to predict potential 
lncRNA-disease associations. DMFLDA uses deep learn-
ing techniques to extract latent vectors of lncRNAs and 
diseases from their interaction matrix. Then DMFLDA 
fuses the two vectors into a new vector and use it to per-
form prediction task. Compared with traditional matrix 
factorization-based methods, DMFLDA can capture the 
non-linear, more complex relationships between lncRNAs 
and diseases. Compared with traditional machine learn-
ing-based methods, DMFLDA can obtain more accurate 
representation learning for lncRNAs and diseases. In or-
der to evaluate the efficiency of our method, we com-
pared DMFLDA with 4 popular computational methods. 
The LOOCV results demonstrate that DMFLDA performs 
better than these existing methods. To further evaluate 
the capacity of DMFLDA, case studies of colorectal cancer, 
prostate cancer and renal cancer are carried out. 22 can-
cer-related lncRNAs (8 for colorectal cancer, 7 for prostate 
cancer, and 7 for renal cancer) are verified by mining re-
cent biomedical literature. These experimental results 
show that DMFLDA has enough potential to predict nov-
el diseases-related lncRNAs.  

In this study, DMFLDA uses lncRNA-disease interactions 
to construct a deep matrix factorization model. We know 
that a lot of types of biological information are useful for 
predicting lncRNA-disease interactions. A possible future 
work would be to integrate some useful biological infor-
mation into a deep learning framework to improve the per-
formance. In addition, a better sampling strategy (e.g. using 
lncRNA or disease similarity to distinguish those instances 
that are more likely to be negative instances) should be able 
to improve the performance of the problem; which another 
direction of our future work.  
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