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Abstract

Motivation: Protein–protein interactions (PPIs) play important roles in many biological processes. Conventional bio-
logical experiments for identifying PPI sites are costly and time-consuming. Thus, many computational approaches
have been proposed to predict PPI sites. Existing computational methods usually use local contextual features to
predict PPI sites. Actually, global features of protein sequences are critical for PPI site prediction.

Results: A new end-to-end deep learning framework, named DeepPPISP, through combining local contextual and
global sequence features, is proposed for PPI site prediction. For local contextual features, we use a sliding window
to capture features of neighbors of a target amino acid as in previous studies. For global sequence features, a text
convolutional neural network is applied to extract features from the whole protein sequence. Then the local context-
ual and global sequence features are combined to predict PPI sites. By integrating local contextual and global se-
quence features, DeepPPISP achieves the state-of-the-art performance, which is better than the other competing
methods. In order to investigate if global sequence features are helpful in our deep learning model, we remove or
change some components in DeepPPISP. Detailed analyses show that global sequence features play important roles
in DeepPPISP.
Availability and implementation: The DeepPPISP web server is available at http://bioinformatics.csu.edu.cn/PPISP/.
The source code can be obtained from https://github.com/CSUBioGroup/DeepPPISP.
Contact: limin@mail.csu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins perform functions in various biological processes, and they
rarely act alone as their functions tend to be regulated (Han et al.,
2004). Protein–protein interactions (PPIs) are the physical contacts
between two or more proteins and are crucial for the function of
proteins (De Las Rivas and Fontanillo, 2010; Li et al., 2019).
Identification of PPI sites can help understand how a protein per-
forms its biological functions (Li et al., 2018a, b). In addition, it can
help design new antibacterial drugs (Russell and Aloy, 2008).
Conventional biological experimental methods, such as two-hybrid
screening and affinity purification coupled to mass spectrometry,
are used to identify PPIs (Brettner and Masel, 2012; Terentiev et al.,
2009; Wodak et al., 2013). However, these biological experimental
methods are costly and time-consuming. Thus, developing an

accurate computational approach to predict PPI sites would be of
great value to biologists.

In the past two decades, a lot of computational approaches have
been established to predict PPI sites. These methods can be roughly
divided into three categories: protein–protein docking and modeling,
structure- and sequence-based methods (Hou et al., 2017). Protein–
protein docking and structure-based methods usually need structural
details (Hou et al., 2016), while many proteins have no structural in-
formation except for their protein sequences. In addition, with the
rapid development of high-throughput sequencing techniques, a
growing number of protein sequences can be obtained, which makes
sequence-based methods get more attention. A majority of computa-
tional methods employ machine learning algorithms, including shal-
low neural networks (Chen and Zhou, 2005; Fariselli et al., 2002;
Ofran and Rost, 2003; Porollo and Meller, 2007), support vector
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machine (Li et al., 2008; Sriwastava et al., 2015; Yan et al., 2004),
random forest (Hou et al., 2017; Northey et al., 2018; Wang et al.,
2018), Naı̈ve Bayes (Lin and Chen, 2013), ensemble learning (Deng
et al., 2009) and conditional random field (Li et al., 2007). In these
studies, a large number of features extracted from protein sequences
are used. The commonly used features are evolutionary information
(Caffrey et al., 2004; Carl et al., 2008; Choi et al., 2009), secondary
structure (Guharoy and Chakrabarti, 2007; Li et al., 2012; Ofran
and Rost, 2007). In addition to these commonly used features, some
other physiochemical, biophysical and statistical features, e.g. ac-
cessible surface area (de Vries and Bonvin, 2008; Hou et al., 2017),
protein size (Martin, 2014), backbone flexibility (Bendell et al.,
2014) and sequence specificity (Hou et al., 2015), are used for PPI
site prediction.

It is well known that local contextual features are crucial for PPI
site prediction. Thus, many computational methods used a sliding
window-based method to extract features of neighbors of an amino
acid. The sliding window-based method is not only used to extract
local features of the target amino acid in PPI site prediction (Hou
et al., 2017; Mihel et al., 2008; Wang et al., 2018), but also used in
various protein-related problems including protein structure predic-
tion and protein disorder prediction (Yaseen and Li, 2013). In add-
ition, global features of protein sequences also hold vital evidence for
the prediction of PPI sites. The previous studies have reported that
global sequence features are helpful to predict interface amino acids
(Yan et al., 2004). The existing computational methods have achieved
good performance, but they do not take global sequence features into
account in their model. Actually, the lack of global sequence features
can decrease the performance of machine learning algorithms.

To extract and integrate global sequence features, we use deep
learning techniques. In recent years, deep learning techniques have
been successfully applied in bioinformatics (Li et al., 2018a, b;
Li and Yu, 2016; Pan and Shen, 2018; Zeng et al., 2019a, b; Zhang
et al., 2019). Convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are applied to extract sequence features
and have proven to be effective in many biological tasks (Zeng
et al., 2018). Inspired by their success, we propose a deep learning
model called DeepPPISP to predict PPI sites. The key idea of
DeepPPISP is to extract not only local contextual features but also
global features from protein sequences and integrate them into a
deep learning framework. For local contextual features of a target
amino acid, we use a sliding window to obtain the features of neigh-
boring amino acids. For global features of entire protein sequences,
we combine different deep learning structures, e.g. fully connected
layers, CNNs, to extract sequence features. After the part of local
contextual and global sequence feature extraction, two feature vec-
tors are concatenated together to carry out the classification task.
To our knowledge, it is the first time to apply deep learning techni-
ques to combine local and global features from protein sequences to
PPI site prediction.

To evaluate the performance of DeepPPISP, we compare
DeepPPISP with five computational methods (PSIVER, SPPIDER,
SPRINGS, ISIS and RF_PPI). The results show that DeepPPISP
achieves the state-of-the-art performance for predicting PPI sites. In
order to investigate whether the global sequence features are helpful
to predict PPI sites, we remove or change some components in our
model. The detailed analyses show that the global sequence features
are very important in DeepPPISP.

2 Materials and methods

2.1 Datasets
Similar to previous studies, we used the three benchmark datasets,
i.e. Dset_186, Dset_72 (Murakami and Mizuguchi, 2010) and

PDBset_164 (Singh et al., 2014). Dset_186 has been built from the
PDB database and consists of 186 protein sequences with the reso-
lution <3.0 Å with sequence homology <25%. Dset_72 and
PDBset_164 are constructed as the same as Dset_186. Dset_72 has
72 protein sequences and PDBset_164 consists of 164 protein
sequences. These protein sequences in the three benchmark datasets
have been annotated. Thus, we have 422 different annotated protein
sequences. We remove two protein sequences as they do not have
the definition of secondary structure of proteins (DSSP) file. In this
study, an amino acid is defined as an interaction site if its absolute
solvent accessibility is <1 Å2, before and after the binding of a pro-
tein in the binding form; otherwise, it is defined as a non-interaction
site. We count the number of interaction sites and non-interaction
sites. 1923, 5517 and 6096 amino acids are interaction sites in
Dset_186, Dset_72 and PDBset_164, respectively; 16 217, 30 702
and 27 585 amino acids are non-interaction sites in Dset_186,
Dset_72 and PDBset_164, respectively. Although these protein
sequences in three datasets are not repeated, three datasets come
from different research groups. To ensure that the training set and
test set are from an identical distribution, we integrate three datasets
to a fused dataset. We count the lengths of all sequences in the fused
dataset. Table 1 shows the distribution of the lengths of all sequen-
ces. Then we divide the fused dataset into a training set (about
83.3% of randomly selected protein sequences) and a test set (the
remaining protein sequences). Another advantage of doing this is
that we can make full use of these protein sequences to train our
deep learning model. As we know, training a deep learning model
requires a large number of samples. Last, there are 350 protein
sequences in the training set (50 proteins for independent validation
set) while there are 70 protein sequences in the test set.

2.2 Input features
The feature selection is a crucial step in a deep learning framework.
As mentioned earlier, evolutionary information and secondary struc-
ture properties are used to encode features of each amino acid in
protein sequences. In addition, the raw protein sequences are used in
this study. These features are described in detail as follows.

2.2.1 Position-specific scoring matrix

The evolutionary information in position-specific scoring matrix
(PSSM) has been proven to be effective in PPI site prediction. PSSM
is generated by running the PSI-BLAST algorithm to search against
the NCBI’s Non-Redundant sequence database with three iterations
and an E-value threshold of 0.001. Each amino acid is encoded as a
vector with 20 elements that represent the probabilities of 20 amino
acids occurring at this position.

2.2.2 Secondary structure

The secondary structure is a very popular feature used to encode
structure information of amino acids in PPI site prediction.
Secondary structure information is generated by running the DSSP
program. We use eight-category secondary structure states [310-helix
(G), a-helix (H), p-helix (I), b-strand (E), b-bridge (B), b-turn (T),
bend (S) and loop or irregular (L)]. Considering that some amino
acids do not have their secondary structure states in the DSSP file.
We use a 9D one-hot vector to encode them, i.e. only one element is
one and the others are zero. The first eight dimensions represent the
state of each amino acid, and the last dimension represents no infor-
mation about secondary structure states.

2.2.3 Raw protein sequences

Raw protein sequences can accurately represent each amino acid
with its position. Most proteins consist of 20 types of different

Table 1. Statistics of lengths of all sequences in the study

Length range 1–100 100–200 200–300 300–400 400–500 500–600 600–700 700þ
Number 85 176 68 56 23 7 4 3
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amino acids. Thus, we use a 20D one-hot vector to encode the types
of amino acids in the protein.

Thus, using the three types of features, we obtain a 49D feature
vector for each amino acid in protein sequences.

2.3 Network architecture and feature embedding
As illustrated in Figure 1, DeepPPISP consists of two parts, i.e. fea-
ture extraction and classification parts. DeepPPISP is an end-to-end
model. The inputs to DeepPPISP are two types of features, local con-
textual and global sequence features. The feature extraction part is
responsible for preprocessing and extracting useful local and global
features and patterns to predict PPI sites.

For local contextual features, similar to previous studies, a sliding
window-based method is applied to extract features of neighbors of an
amino acid. Specifically, a sliding window size of (2n þ 1) means we
consider the target amino acid at the center and 2n neighbor amino acids
as input features of the target amino acid. For example, if sliding win-
dow size is 7, for each amino acid at position i, the features of amino
acids at position i�3, i�2, i�1, i, Iþ 1, iþ 2, iþ 3 are considered as its
local contextual features. For those amino acids which do not have
neighbors of amino acids in the left or right window, we use the all-zero
vector of the same length as the feature vector as its missing features.

Global features of protein sequences are the focus of our study. For
global sequence features, we applied deep learning techniques to learn
them from protein sequences. Given a protein sequence A ¼ a1, a2, . . .
an, each amino acid is represented by a 49D feature vector (20D for
PSSM, 9D for secondary structure, 20D for raw protein sequences).
From Table 1, we know that only 14 protein sequences have more than
500 amino acids. Thus the length of all protein sequences is normalized
to 500. If a protein sequence longer than 500, then we truncate it; if
shorter than 500, we pad it with zeros. In addition, we note that both
the secondary structure vector and the raw protein sequence vector are
sparse one-hot vectors, while the PSSM vector is a dense vector. To
avoid the inconsistency of different types of input features, inspired by
word embedding techniques in natural language processing, an embed-
ding layer is applied to transform sparse a raw protein sequence vector
to a denser vector. The embedding layer is implemented as a fully con-
nected layer. After the embedding layer, an embedded raw protein se-
quence vector is concatenated with the PSSM vector and the secondary
structure vector as a pre-processed vector. After that, a text CNN with a

max pooling layer is applied to extract the global features of the pre-
processed vector. The output vectors of this layer are concatenated to-
gether as the global features of the input protein sequence.

The classification part consists of two fully connected layers and
an output layer. In the classification part, there are two fully con-
nected layers taking the concatenated vector as input. The output
from the second fully connected layer is fed into the output layer
with a sigmoid activation function, which performs binary classifi-
cation to determine if the input amino acid is an interaction site.

2.4 Text CNNs
In addition to local contextual features, global sequence features are
crucial in PPI site prediction. Text CNNs (TextCNN) can capture glo-
bal features of protein sequences. Traditional CNNs are usually used to
extract features of 2D image data. In recent years, some searchers
started to use CNNs to address texts. The central idea is that a text can
be treated as a 1D image. Thus, 1D CNNs can be used to capture the
relationship between adjacent words. Inspired by this, we treat the
whole protein sequence as a text in order to better extract features of
the whole protein sequence by using TextCNN. Specifically, assume
that a protein sequence consists of n amino acids, and each amino acid
is represented by an m-dimensional vector. Then the protein sequence
can be treated as an image, i.e. the width is n, the height is 1, and the
channel is m. To capture features of different lengths of subsequence,
multiple different scale convolutional kernels are used. We can use dif-
ferent scale convolutional kernels to obtain the relationship between dif-
ferent numbers of adjacent amino acids (Zeng et al., 2019a,b). A max
pooling layer is applied to capture the most important features of each
channel and reduce the dimension of the output vector. Then the output
vectors of a max pooling layer are concatenated together as a concaten-
ated vector which contains global features of the whole protein se-
quence. Supplementary Figure S1 gives the illustration of TextCNN.

2.5 Applicability domain
In DeepPPISP, three physicochemical or topological properties are used
to define the applicability domain, which are putative relative solvent
accessibility (RSA) score, polarity and protein sequence length. RSA
score is a key property relevant to the characterization of PPI-binding
sites and is predicted by ASAquick (Zhang and Kurgan, 2018).

Fig. 1. The deep neural network structure of DeepPPISP. The input consists of two types of data: subsequence and whole protein sequence. For subsequence, a sliding window

size of 7 is applied to extract features of neighbors of a target amino acid. Then the combination of three types of features is flattened a local feature vector. For the whole pro-

tein sequence, the length (L) is set to 500. First, through raw sequence feature embedding, three types of features are concatenated to a preprocessed vector, which is fed into a

TextCNN with different kernels (13, 15 and 17) to obtain a global sequence feature vector. The local and global feature vectors are concatenated, and then the concatenated

vector is fed into two fully connected layers for prediction

1116 M.Zeng et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/4/1114/5564115 by C
entral South U

niversity user on 19 M
ay 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz699#supplementary-data


Each residue in different position has its own unique score. We calcu-
late the average RSA score for each protein in the training set.
Similarly, the polarity is relevant to PPI and is quantified using the
AAindex resource (Zhang and Kurgan, 2019). Each type of residues
has its own polarity. We calculate the average polarity for each protein
in the training set. Protein sequence length is the number of residues in
the protein. We analyze the distribution of these properties in our train-
ing set. The definition is as follows: if a specific physicochemical or
topological property in the range of 5–95% of the training set, it
regarded as in domain; if it is in the range of 0–5% or 95–100%, it is
regarded as warning domain; if it is higher than the maximum value or
lower than the minimum value, it is regarded as out domain.
Supplementary Figure S2 gives the definition of the applicability do-
main of three physicochemical or topological properties.

2.6 Evaluation metrics
For PPI site prediction, we assume the interaction sites to represent
the positive samples and non-interaction sites to represent the nega-
tive samples. To evaluate the performance of our model and other
methods in PPI sites, six evaluation metrics are used in this study: ac-
curacy (ACC), precision, recall, F-measure, area under the receiver
operator characteristic curve (AUC), area under the precision-recall
curve (auPR) and the Matthews correlation coefficient (MCC).

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(1)

precision ¼ TP

TPþ FP
(2)

recall ¼ TP

TPþ FN
(3)

F�measure ¼ 2 � precision � recall

precisionþ recall
(4)

MCC ¼ TP �TN� FP �FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð ÞðTNþ FNÞ

p (5)

where TP represents the number of interaction sites identified cor-
rectly, FN denotes the number of interaction sites identified incor-
rectly, FP represents the number of non-interaction sites identified
incorrectly, TN denotes the number of non-interaction sites identi-
fied correctly. It should note that in an imbalanced learning prob-
lem, F-measure, MCC and auPR are three most important
evaluation metrics as they can provide comprehensive measure than
other evaluation metrics (Zeng et al., 2016).

2.7 Implementation details
Our deep learning framework is implemented with PyTorch (http://
pytorch.org/) which is a popular deep learning package. The loss
function we used is the cross-entropy loss, defined as follows:

Loss ¼ �1

n

X
½ylog ypredð Þ þ 1� yð Þlog 1� ypred

� �
� (6)

where n is the number of all training data, y is the true label and
ypred is the predicted label. There are two properties to use the cross-
entropy function as a loss function. First, it is non-negative. Second,
if the predicted label is close to the true label for all training data,
the function is close to zero.

The optimizer we used is Adaptive Momentum (Adam).
DeepPPISP uses the following formula to update the weights:

htþ1 ¼ ht �
affiffiffiffiffi

v̂t

p
þ e

m̂t (7)

where htþ1 is the updated parameter, a is the learning rate, e is a con-
stant added to maintain numerical stability, m̂t and v̂t are bias-
corrected first and second moment estimates, respectively.

To extract local contextual and global sequence features, the
length of sliding window is set to 7; the length of protein sequence is
set to 500. For the deep learning structure, the batch size is set to 64;
the learning rate is set to 0.001; multi-scale CNN layers with the
kernels (13, 15 and 17) are used to extract global sequence features
in TextCNN. The first fully connected layer in the classification part
has 1024 nodes and the second fully connected layer has 256 nodes.
To avoid overfitting, a dropout rate of 0.2 is applied in DeepPPISP.
In this study, we use an independent validation set to tune parame-
ters. The independent validation set is a hold out subset (50 pro-
teins) of our training set. The workflow of training is that we train
our model on the training set. Then we use independent validation
set to tune the parameters of our model and see how well the model
is. After having done this long enough, we can have a best model
and evaluate it on the test set to get an unbiased estimate.

3 Results

3.1 Comparison with competing methods
To evaluate the performance of DeepPPISP in predicting PPI sites,
we compared DeepPPISP with five competing methods (PSIVER,
SPPIDER, SPRINGS, ISIS and RF_PPI). The five competing methods
all used shallow machine learning methods as their predictors.
PSIVER (Murakami and Mizuguchi, 2010) used sequence features
(PSSM and predicted accessibility) to predict PPI sites by using a
Naı̈ve Bayes classifier. SPPIDER (Porollo and Meller, 2007) used al-
ternative machine learning techniques which combine fingerprints
with other sequence and structure information to predict PPI sites.
SPRINGS (Singh et al., 2014) utilized shallow neural network algo-
rithm based on evolutionary information, averaged cumulative hy-
dropathy and predicted RSA to predict PPI sites. ISIS (Ofran and
Rost, 2007) used a shallow neural networks to combine predicted
structural features with evolutionary information to predict PPI
sites. RF_PPI was developed by Hou et al. (2017), which applied the
random forest algorithm based on various features to predict PPI
sites. These methods all used local contextual information but did
not take into account global sequence features (see Supplementary
Table S1).

Table 2 shows the results of DeepPPISP and five competing com-
putational methods on the test set. From Table 2, we found that
most of the assessment metrics obtained by DeepPPISP were higher
than other competing methods. Although accuracy and recall of
DeepPPISP are lower than ISIS and SPRINGS, respectively, the other
assessment metrics are higher than other competing methods.
Precision, F-measure and MCC obtained by DeepPPISP are 0.303,
0.397 and 0.206, respectively, which are better than PSIVER (0.253,
0.328 and 0.138), SPPIDER (0.209, 0.287 and 0.089), SPRINGS
(0.248, 0.350 and 0.181), ISIS (0.211, 0.267 and 0.097) and RF_PPI
(0.173, 0.258 and 0.118). It is a remarkable fact that PPI site predic-
tion is an imbalanced learning problem, thus we pay more attention
to F-measure and MCC. The F-measure and MCC of DeepPPISP are
the highest in the all existing methods, which shows that DeepPPISP
outperforms the other computational methods. The PR curves of
DeepPPISP and other competing methods are shown in Figure 2. It
demonstrates that auPR of DeepPPISP is higher than that of other
competing methods. In addition, we performed training on the com-
bination of Dset_186 and PDBset_164 datasets and testing on the
Dset_72 dataset. Although the results of DeepPPISP on Dset_72
dataset are slightly lower than those of DeepPPISP on the test set,
DeepPPISP performs better than other competing models. Detailed
results can be found in Supplementary Table S2 and Figure S3. We
also compared DeepPPISP with a structure-based method (IntPred)
(see Supplementary Table S3).

3.2 The effects of different dimensions of the global

sequence features
In this study, we focused on whether global sequence features are
useful for predicting PPI sites. First, we tested the effects of global se-
quence features. We trained our model based on the raw training set
but removing global sequence features extraction part. Table 3
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shows the performance of our model by using local textual features
to predict PPI sites. ACC, precision, recall, F-measure and MCC
obtained without global sequence features are 0.520, 0.240, 0.663
0.353 and 0.118, respectively. When compared with the raw
DeepPPISP model, all evaluation metrics are lower than DeepPPISP
model except recall. Through combining local textual and global se-
quence features, we can get better performance than using the only
local textual feature (about 4% higher in F-measure, 9% higher in
MCC), which shows the advantages of global sequence features.
Supplementary Figure S4 shows the ROC curves of DeepPPISP and
DeepPPISP without global sequence features. The AUC value of
DeepPPISP is higher than DeepPPISP without global sequence
features.

In addition to show the advantages of global sequence features,
we changed different dimensions of global sequence features to ob-
serve the effects and variances of predictive performance. In
DeepPPISP, the length of the local textual feature vector is 343
(7*49). We used different lengths of global sequence feature vector
to train our model. Specifically, the different ratios of the length of
global sequence feature vectors to the length of local textual feature
vector (1:1, 1:2, 1:3, 1:4, 1:5, 2:1, 3:1, 4:1 and 5:1) were applied to
train DeepPPISP. The predictive performances are shown in
Supplementary Table S4. From Supplementary Table S4, we
observed that the best performance was obtained with a ratio of 2:
1. DeepPPISP obtains the accuracy of 65.5%, precision of 0.303, re-
call of 0.577, F-measure of 0.397 and MCC of 0.206, respectively,
which are better than the other ratios. It can be also observed from

Supplementary Table S4 that when we used the ratio of 1:5 and 5:1
for training, the results are very bad. In the ratio of 1:5, F-measure
and MCC are 0.384 and 0.179, respectively; in the ratio of 5:1,
F-measure and MCC are 0.386 and 0.182, respectively. The reason
we believe is that the predictive performance decreases when using
extremely unbalanced ratio. For instance, when using the ratios of
5:1, the global sequence feature vector dominated the whole feature
vector. A protein sequence consists of hundreds of amino acids and
these amino acids share a vector of global sequence features. Thus,
the predictive results are mainly determined by the global sequence
features and are biased to a certain result. With the ratio of 1:5, the
local contextual feature vector dominated the whole feature vector
and the global sequence feature vector is not so important. If two
amino acids are far apart (more than 7 amino acids in length), they
do not have the same amino acid in their neighbors and do not share
local features. Thus, the predictive results are mainly determined by
the local contextual features and vary a lot.

3.3 The effects of different types of input features
Besides the dimension of the global sequence features, the different
types of input features (raw protein sequences, PSSM, secondary
structure) play different roles in our model. In order to discover
what role each type of feature plays in DeepPPISP, we conducted an
ablation study by removing each feature in DeepPPISP. Specifically,
we compared the performances of different models without raw pro-
tein sequences, PSSM, or secondary structure. From the results pre-
sented in Supplementary Table S5, it is clear that the raw protein
sequence is the most important feature in DeepPPISP. Without the
raw protein sequence, ACC, F-measure and MCC drop from 0.655,
0.397 and 0.206–0.564, 0.367 and 0.148, respectively. PSSM and
secondary structure are not as important as raw protein sequence.
Without PSSM, ACC, F-measure and MCC drop to 0.605, 0.388
and 0.186, respectively. Without secondary structure, ACC, F-meas-
ure and MCC drop to 0.592, 0.380 and 0.172, respectively. The
results indicate that three different types of input features play dif-
ferent roles in DeepPPISP. The most important feature is the raw
protein sequence. PSSM and secondary structure are used as auxil-
iary information to improve the performance of PPI site prediction.

Before we did the experiment, we envisioned that PSSM should
be the most useful feature in PPI site prediction because PSSM con-
tains evolutionary information and is the most popular feature.
However, the raw protein sequence is the most important feature
after a combination of various features. It is of interest to know if
the raw protein sequence is also the most important feature in local
contextual features. First, we removed the global sequence features,
and then compared the performances of different models using only
raw protein sequences, PSSM and secondary structure. From the
results presented in Supplementary Table S6, we found that PSSM is
the most important feature in local features. By using only PSSM,
ACC, F-measure and MCC drop from 0.520, 0.353 and 0.118 to
0.443, 0.348 and 0.100, respectively. By using only raw protein
sequences, ACC, F-measure and MCC drop to 0.371, 0.339 and
0.07, respectively. By using only secondary structure, ACC, F-meas-
ure and MCC drop to 0.267, 0.334 and 0.05, respectively.
Supplementary Figure S5 shows the ROC curves of DeepPPISP
(removing global features) with an individual feature in local con-
textual features. The AUC value with only PSSM is higher than the
others. The results show that the most vital feature is PSSM in local
features. This finding is also consistent with previous studies and we
believe that the results are reasonable. PSSM contains evolutionary
information and has a strong relationship with PPI, and thus almost
all sequence-based methods use PSSM as their input features for PPI
site prediction.

3.4 The effects of the different lengths of sliding

window
Besides the dimension of the global sequence features, we investi-
gated the effects of local contextual features with different sizes.
Specifically, we applied different lengths (i.e. 7, 9, 11, 13 and 15) of
sliding windows to observe the performance of DeepPPISP.

Fig. 2. PR curves of DeepPPISP and other competing methods on the test set

Table 2. Predictive performance of DeepPPISP and other compet-

ing methods (PSIVER, SPPIDER, SPRINGS, ISIS and RF_PPI) on the

test set

Method ACC Precision Recall F-measure MCC

PSIVER 0.653 0.253 0.468 0.328 0.138

SPPIDER 0.622 0.209 0.459 0.287 0.089

SPRINGS 0.631 0.248 0.598 0.350 0.181

ISIS 0.694 0.211 0.362 0.267 0.097

RF_PPI 0.598 0.173 0.512 0.258 0.118

DeepPPISP 0.655 0.303 0.577 0.397 0.206

Table 3. Predictive performance of DeepPPISP and DeepPPISP

without global sequence features

Model ACC Precision Recall F-measure MCC

Without global features 0.520 0.240 0.663 0.353 0.118

Global and local features 0.655 0.303 0.577 0.397 0.206
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From the results presented in Supplementary Table S7, the best per-
formance is obtained when the length of the sliding window is 7 (the
best F-measure and MCC). The overall performances of different
lengths of sliding windows are stable. The differences of F-measures
and MCCs are very small. The results show that the length of the
sliding window can be small if we use global sequence features in
our model. We believe that global sequence features already contain
some local contextual features, and thus we only need a small sliding
window to extract local contextual features.

3.5 The effects of different lengths of proteins
In addition, we believe that the protein length is a very important
factor in our study because we need to take global sequence infor-
mation into consideration. Thus we investigate whether the protein
length has an impact on classification results. Protein lengths in our
dataset vary from 39 to 869 and 62.1% of the lengths of proteins
are <200 amino acids. To gain more insights about the effects of
protein length, we grouped proteins into short length proteins
(<200 amino acid residues) and long length proteins (large than 200
amino acid residues). Supplementary Figure S6 plots the predictive
performance of DeepPPISP on the different group. From
Supplementary Figure S6, the prediction results of short length pro-
teins are consistently higher than the prediction results of long
length proteins. The results reveal two phenomena. The first one is
that protein length is a very important factor. The results for pro-
teins with different lengths are quite different. The second one is
that DeepPPISP is good at predicting short length proteins while not
at predicting long length proteins, which is a main limitation of
DeepPPISP.

3.6 Case studies
In this section, we give two specific examples of the results obtained
by DeepPPISP and other competing methods, to show the real effects
of the performance. The two specific examples are not used in train-
ing and testing steps. The first example has 14 PPI-binding sites
(Uniprot ID: P00268). Table 4 lists the positions of correctly pre-
dicted PPI sites by DeepPPISP and other competing methods.
DeepPPISP correctly predicted 12 PPI sites while PSIVER, SPPIDER,
SPRINGS, ISIS, RF_PPI correctly predicted 1, 4, 0, 1, 4 PPI sites, re-
spectively. As can be seen from Table 4, the 12 correctly predicted
PPI sites obtained by DeepPPISP contain the correctly predicted PPI

sites obtained by other competing methods. When compared with
other methods, DeepPPISP can make a more correct prediction.

The second example does not have any PPI-binding sites
(Uniprot ID: P31243). It is worth noting that all proteins in our
training and test set have PPI-binding sites. Thus it is very interesting
to see the results of DeepPPISP on this type of proteins which do not
have any PPI-binding sites. Table 5 lists the number of predicted PPI
sites by DeepPPISP and other competing methods. Using the number
as an evaluator, DeepPPISP predicted 23 PPI sites, which is second
ranked position on this protein while PEIVER predicted 4 PPI sites.
The results show that DeepPPISP does not give a lot of PPI site pre-
diction on proteins which do not have any PPI-binding sites.

4 Conclusions

Accurate prediction of PPI sites can facilitate the understanding of
the biological functions of proteins. In this study, we present a deep
learning framework DeepPPISP for the prediction of PPI sites at the
residue level. DeepPPISP distinguishes itself from other existing
methods is that it combines local and global features which are
extracted from protein sequences to predict PPI sites by using deep
neural networks. Deep learning techniques have been demonstrated
to capture effective features of input data. DeepPPISP uses
TextCNN to capture global sequence features, which allows to eas-
ily model the relationship between a target amino acid and the
whole protein sequence. The results show that DeepPPISP improves
PPI site prediction, exceeding existing competing methods.
Furthermore, our results demonstrate that the global features of pro-
tein sequences can help to improve the prediction of PPI sites.
Though DeepPPISP is demonstrated to have advantages over other
competing methods, it also has some limitations. The first one is the
slow speed. It takes a lot of time to generate sequence profiles
(PSSM and DSSP files) and run TextCNN to capture global se-
quence features of protein sequence in our model. The second one is
that DeepPPISP is not good at predicting long length proteins.

Sequence-based PPI site prediction remains a challenging prob-
lem. There is no single property from sequence that can analyze pro-
tein sequence correctly. In this study, we show that a new feature
(global sequence feature) can be used for PPI site prediction. We be-
lieve that the global sequence feature has a great potential in other
biological sequence analysis and prediction problems. We hope that
our study can boost other studies including targeted mutation, drug
development and enzymes for various biotechnological applications.
In the feature, we would further improve PPI site prediction by
enlarging the training set or using more powerful deep learning tech-
niques (Wu et al., 2019).
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