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Abstract

The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding lncRNA functions. Most of existing lncRNA
subcellular localization prediction methods use k-mer frequency features to encode lncRNA sequences. However, k-mer frequency
features lose sequence order information and fail to capture sequence patterns and motifs of different lengths. In this paper, we
proposed GraphLncLoc, a graph convolutional network-based deep learning model, for predicting lncRNA subcellular localization.
Unlike previous studies encoding lncRNA sequences by using k-mer frequency features, GraphLncLoc transforms lncRNA sequences
into de Bruijn graphs, which transforms the sequence classification problem into a graph classification problem. To extract the high-
level features from the de Bruijn graph, GraphLncLoc employs graph convolutional networks to learn latent representations. Then, the
high-level feature vectors derived from de Bruijn graph are fed into a fully connected layer to perform the prediction task. Extensive
experiments show that GraphLncLoc achieves better performance than traditional machine learning models and existing predictors.
In addition, our analyses show that transforming sequences into graphs has more distinguishable features and is more robust than
k-mer frequency features. The case study shows that GraphLncLoc can uncover important motifs for nucleus subcellular localization.
GraphLncLoc web server is available at http://csuligroup.com:8000/GraphLncLoc/.
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Introduction
Long non-coding RNAs (lncRNAs) are an extremely important
class of RNAs, which usually have more than 200 nucleotides.
With the rapid development of high-throughput sequencing tech-
nology, the cumulative evidence shows that lncRNAs are involved
in almost all life cycles of cells [1], including metabolic pro-
cesses, epigenetic regulation, cell differentiation and apoptosis,
chromosomal abnormalities, organ or tissue development [2]. For
example, lncRNAs regulate the active state of gene expression by
interacting with chromatin-modifying proteins or transcription
factors and their specific protein-binding motifs [3]; lncRNA can
directly bind to its complementary DNA sequence, forming an
RNA–DNA triple structure, which can block the transcription pro-
cess [4]. In addition, many human diseases are closely associated
with mutations or dysregulation of lncRNAs [5], including breast
cancer, prostate cancer, hepatocellular carcinoma, colon can-
cer, bladder cancer, thyroid cancer, lung cancer, ovarian cancer,

Alzheimer’s disease, diabetes and AIDS. As a result, recent years
have witnessed an increasing number of lncRNA function studies
in the biological field.

It has been reported that the subcellular localization of lncR-
NAs is different and the mechanisms of lncRNA subcellular local-
ization are diverse [6]. Understanding the subcellular localizations
of lncRNAs can provide valuable insights into their functions
[7, 8] . For example, lncRNA PVT1 located in the nucleus leads to
elevated MYC levels in cancer by interfering with the phospho-
rylation of the MYC Thr58 site in the nucleus, thereby increasing
MYC stability [9]; lncRNA linc-MD1 located in the cytoplasm can
repress miR-133 and thus affect transcription factor activation
of muscle-specific gene expression [10]; lncRNAs located in exo-
somes are thought to mediate cell-to-cell communication via RNA
carriers [11]. Therefore, the identification of lncRNA subcellular
localization is essential to understand the biological functions of
lncRNAs [12].
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The gold standard method for determining RNA subcellular
localizations is single-molecule fluorescent in situ hybridization
(smFISH) technique. Despite the fact that such image data are
perfect for determining lncRNA localization compartment, the
technique is expensive, time-consuming and technically chal-
lenging. Given these limitations, developing accurate and reliable
computational methods to predict lncRNA subcellular localiza-
tion would be of great value to biologists.

Currently, some computational methods have been proposed
to predict lncRNA subcellular localization. To the best of our
knowledge, the first predictor is lncLocator [13]. LncLocator feeds
raw 4-mer frequency features to stacked autoencoders, and then
feeds the high-level abstraction of 4-mer frequency features to
two types of classifiers, i.e. random forest (RF) and support vec-
tor machine (SVM). Lastly, lncLocator uses a stacked ensemble
strategy to combine the results to obtain the final classifica-
tion probabilities. Su et al. [14] proposed iLoc-lncRNA that con-
verts lncRNA sequences into 8-mer frequency features and uses
binomial distribution to perform feature selection. Finally, iLoc-
lncRNA applies SVM to obtain the output results by using the
optimal features. Gudenas and Wang developed a deep learning
model called DeepLncRNA [15]. DeepLncRNA uses 2, 3, 4, 5-mer
frequency features, RNA-binding motifs and genomic loci, and
feeds the combined features to a deep neural network to obtain
the final prediction results. Ahmad et al. [16] proposed Locate-
R, using a local depth SVM and selecting 655 optimal k-mer fre-
quency features as input features. Fan et al. [17] proposed a logistic
regression-based machine learning predictor called lncLocPred.
LncLocPred uses sequence features including k-mer frequency
features, PseDNC and Triplet features, and then selects represen-
tative features from the combined features. Feng et al. [18] pro-
posed lncLocation, which integrates multi-source features includ-
ing k-mer frequency features, physicochemical properties and
secondary structure features. Then lncLocation applies feature
extraction based on self-encoders and hybrid feature selection
methods to select representative features. Zeng et al. [19] pro-
posed DeepLncLoc, a text convolutional neural network-based
deep learning framework that uses subsequence embedding tech-
niques to encode lncRNA sequences. Recently, lncLocator 2.0
[20] and iLoc-lncRNA 2.0 [21] have been developed. LncLoca-
tor 2.0 extracts GloVe embedding vectors from sequences and
feeds the embedding vectors into convolutional neural networks
(CNN), long short-term memory (LSTM), and multi-layer percep-
tion (MLP). iLoc-lncRNA 2.0 uses 8-mer frequency features to
encode lncRNA sequences and then uses mutual information-
based feature selection and incremental feature selection strat-
egy to select the optimal features.

Although several computational methods have been proposed,
most of them rely on k-mer frequency features to encode lncRNA
sequences. In a machine/deep learning model, how to encode raw
lncRNA sequences into discriminative features is the most impor-
tant issue. However, using k-mer frequency features to encode
lncRNA sequences has some drawbacks. (i) It only reflects the
frequency information and ignores sequence order information;
(ii) it cannot capture patterns and motifs of different lengths when
k is fixed. (iii) Moreover, when k is small, the encoding method
could not obtain sufficient feature information or is unable to
capture useful features, which leads to the underfitting of the pre-
diction model. When k is large, the dimensionality of the encoding
vector increases exponentially and will make the encoding vector
sparse, wasting computational resources and causing potential
overfitting problems.

To address these issues, we developed GraphLncLoc, a
graph convolutional network-based model using only lncRNA

sequences, for predicting lncRNA subcellular localization. Differ-
ent from the previous studies that encode lncRNA sequences
by using k-mer frequency features, GraphLncLoc transforms
lncRNA sequences into de Bruijn graphs, which can provide more
comprehensive information. In the de Bruijn graph, the nodes
of the graph are 4-mer units and the direction of the edges is
determined by the sequential order. Then, GraphLncLoc uses
the pre-trained word2vec embedding vector of 4-mer as node
features and assigns weights for edges. GraphLncLoc uses graph
convolutional networks (GCN) to learn the latent representations
and extract the high-level features from the de Bruijn graph.
Finally, GraphLncLoc uses a fully connected layer to perform the
prediction task. The core idea is inspired by the de Bruijn graph
in genome assembly [22]. Figure 1(A) shows the core idea of our
study. The advantages of transforming sequences into graphs are
summarized as follows. Figure 1(B) shows the advantages of our
method.

• It keeps local order information of lncRNA sequences by using
a directed graph.

• It can automatically capture patterns and motifs of different
lengths in lncRNA sequences by connecting multiple nodes
in the graphs to form paths.

• Using aggregation operation can aggregate multiple neighbor-
ing nodes to form community and subgraph, and thus can
capture global and high-level features of the whole lncRNA
sequence.

• It can integrate other types of biological data from different
data sources as the node features, and thus can provide a
more comprehensive feature encoding for lncRNA sequences.

We conducted extensive experiments to evaluate the perfor-
mance of GraphLncLoc. Comparison with traditional machine
learning classifiers using different k-mer frequency features
shows the benefits of transforming sequences into graphs.
Comparison with different graph construction methods proves
the advantages of the proposed graph construction method in
GraphLncLoc. Comparison with existing predictors proves the
effectiveness of GraphLncLoc in predicting lncRNA subcellular
localization. Furthermore, our analysis shows that GraphLncLoc
is capable of generating more distinguishable features than k-
mer frequency features. GraphLncLoc is also more robust than
k-mer frequency features in lncRNA subcellular localization
prediction. The case study shows that GraphLncLoc can find
important motifs for nucleus subcellular localization. Finally, we
developed a free and user-friendly web server to facilitate the use
of GraphLncLoc.

Materials and methods
Datasets
Constructing a high-quality benchmark dataset is the first
prerequisite for building a reliable machine/deep learning model.
We collected known RNA subcellular localization informa-
tion from RNALocate v1.0 database [23]. The RNALocate v1.0
database records 42 190 RNA subcellular localization entries with
experimental evidence involving nine RNA categories (including
lncRNA, csRNA, mRNA, miRNA, piRNA, snRNA, rRNA, snoRNA
and tRNA). Among these entries, the RNALocate v1.0 database
contains a total of 2383 lncRNA subcellular localization entries.
The steps to construct the benchmark dataset are as follows:

1. We retrieved the 2383 lncRNA subcellular localization
entries from 42 190 RNA-associated subcellular localization
entries.
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Figure 1. The core idea and advantages of our study. (A) The core idea of our study: transforming sequence into graph, which is a new viewpoint
of sequence-based lncRNA subcellular localization prediction. (B) The advantages of our study. Four advantages of our method: (I) keeping sequence
local order information, (II) capturing motifs of different lengths, (III) aggregating multiple nodes to form subgraph to capture high-level features, (IV)
integrating other types of biological data easily.

2. Some lncRNAs have multiple subcellular localization entries
in the database, we merged these entries with the same
gene symbol, and removed some entries without sequence
information in NCBI [24] and Ensembl [25].

3. Because most lncRNAs have only one subcellular
localization in the database, we selected the lncRNAs
that are located in single subcellular localization in the
study.
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4. To reduce data redundancy, we used the CD-HIT-EST tool [26]
to remove redundant sequences at a cut-off value of 80%.

5. The filtered dataset covers seven subcellular localizations.
Two of these categories have fewer than ten lncRNAs, so we
deleted those lncRNAs which are located in the two subcel-
lular localizations. In addition, considering the ambiguous
annotations of the cytoplasm and the cytosol in early liter-
ature [27], we only focus on cytoplasm compartment. Thus,
we removed those lncRNAs which are located in cytosol.

Finally, we established a benchmark dataset with 769 lncRNAs
from four different subcellular localizations including cytoplasm,
nucleus, ribosome and exosome (see Supplementary Figure S1).
Supplementary Figure S2 shows the subcellular localization dis-
tribution of the benchmark dataset.

Overview of GraphLncLoc
The overall framework of GraphLncLoc is illustrated in Figure 2.
The input of GraphLncLoc is a lncRNA sequence and the output
of GraphLncLoc is the probability of each subcellular localization.
The main idea of GraphLncLoc is to transform a lncRNA sequence
into a graph and capture high-level features from the graph using
GCN. GraphLncLoc consists of four parts: graph construction,
node feature extraction, GCN and classification. The graph con-
struction part transforms a lncRNA sequence into a weighted de
Bruijn graph. The node feature extraction part is responsible for
generating node features for each node in the graph based on the
word2vec technique. The GCN part applies GCN to capture high-
level features of the graph. On top of the GCN part, there is a
fully connected layer with a softmax activation function taking
the high-level features as input, which performs four-category
subcellular localization prediction.

Graph construction
In the graph construction part, we transformed lncRNA sequences
into directed graphs. Specifically, we used de Bruijn graph to
encode a lncRNA sequence. Given a lncRNA sequence:

lncRNA = N1, N2, N3, . . . , NL–1, NL (1)

where L denotes the length of the lncRNA, Nj is one of the
four nucleotide bases (A, C, G and U) at position j of the
lncRNA sequence. Its k-mer composition set (here we use 4-
mer as an example) is {N1N2N3N4, N2N3N4N5, N3N4N5N6, . . . ,
NL–3NL–2NL–1NL}. Then we assigned these k-mers to nodes, followed
the order of the k-mer composition set (from left to right), added
one k-mer at each time, used these k-mers to reconstruct the
lncRNA sequence. After the reconstruction process, we glued
identically labeled nodes and formed a de Bruijn graph. Then, we
assigned each directed edge a weight. The weight of this edge is
the frequency of (k + 1)-mer, which is formed by the two nodes
that make up this edge. To reduce the influence of the absolute
differences between edge frequencies, we normalized the edge
weights in the graph. Formally, eji denotes the frequency weight
of the edge from node j to node i, N(i) denotes the set of neighbor
nodes of node i, we normalized the frequency weight with the
formula:

wnorm = eji√∑
q∈N(j) ejq

√∑
q∈N(i) eqi

(2)

Node features
We employed continuous distributed word representations of k-
mer as node features in GraphLncLoc. The k-mer units in lncRNA
sequences are similar to words in the article, thus using con-
tinuous distributed word representations of k-mer can naturally
represent the contextual information of nucleotides in lncRNA.
Specifically, we used all lncRNA sequences in our benchmark
dataset as the corpus, and applied the word2vec technique to
obtain the encoding vector of each 4-mer unit in the lncRNA
sequence corpus as the node feature vector of the graph. In
this study, we used the word2vec technique with the Skip-gram
model to predict surrounding context words given a center word.
Following the idea of the Skip-Gram model, word2vec technique
aims at maximizing the co-occurrence likelihood between a target
4-mer and its contextual 4-mers. By using continuous distributed
word representations of k-mer as node features, GraphLncLoc
enriches the semantic information of the constructed de Bruijn
graph.

Graph convolutional network
After constructing the de Bruijn graph and obtaining the node
features, we trained a GCN to extract high-level features from the
de Bruijn graph. GCN can refine graph topology and node features
by performing convolutional operations on the graph [28]. The
working mechanism of GCN to update network parameters is
described in the following.

In GCN, the propagation rule can be formulated by the follow-
ing equation:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W(l)

)
(3)

where Ã = A + IN is the adjacency matrix of the graph with added
self- connections. IN is the identity matrix, D̃ is the degree matrix
of Ã, W(l) denotes the weight of thelth layer, H(l) denotes the matrix
of activations of thelth layer, σ denotes the non-linear activation
function.

The main idea of GCN layer is to learn a transformation func-
tion to generate the new embedding matrix H(l+1)

i of node i by
aggregating its own features and its neighbors’ features consid-
ering the normalized edge weights. By stacking multi-layer GCN,
we can implement inter-node message passing and capture the
high-level features of the graph. Specifically, GCN aggregates the
embedding matrixes of all nodes or edges, and takes the average
value as the final graph encoding vector. The aggregation formula
for averaging its node features is as follows:

hG = 1
|V|

∑
v∈V

hv (4)

where hG is the encoding vector of graph G, V is the set of all nodes
in graph G and hv is the embedding vector of node v.

Finally, we obtained the graph representation vector hG of graph
G. The high-level features extracted from the de Bruijn graph
using GCN are fed into a fully connected layer to perform the
classification task.

Implementation details
GraphLncLoc is implemented based on the Pytorch library, and
the GCN layer is implemented using Deep Graph Library. The
value k of the k-mer node is set to 4. The dimensionality of the
node feature vector is 128, which is extracted by using pre-trained
word2vec technique with the genism library. The number of the
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Figure 2. The overall architecture of GraphLncLoc. The network architecture has four parts. (A) Graph construction, (B) node feature extraction, (C) GCN
and (D) classification. The input is a lncRNA sequence. Through the graph construction part, a lncRNA sequence is transformed into a weighted de Bruijn
graph. Then, the node feature extraction part is responsible for generating node features for each node in the graph. The GCN part captures high-level
features of the graph by using two layers of GCN. Lastly, a four-category subcellular localization prediction task is performed by a fully connected layer
with a softmax activation function.

hidden neurons in GCN is set to 64, the number of input neurons
of the final fully connected layer is 64 and the number of output
neurons is 4. To avoid overfitting, the dropout rate is set to 0.2 in
the fully connected layer.

The loss function in GraphLncLoc is the focal loss of the non-α-
balanced form [29]. The focal loss function can tackle the problem
of imbalanced data distribution. It is defined as follows:

Focal Loss = −y
(
1 − p

)γ log(p) − (
1 − y

)
pγ log

(
1 − p

)
(5)

where p is the predicted probability value of the sample, y is the
true value and the γ parameter is set to 2. In the training process,
Adam optimizer is applied to optimize the focal loss function, the
learning rate of the optimizer is set to 0.003, the batch size of the
sample is 8.

Results
Evaluation metrics
To evaluate the performance of GraphLncLoc, we used Accuracy
(ACC), Macro Precision, Macro Recall, Macro F1-score and area
under the receiver operator characteristic (ROC) curve (AUC) as
evaluation metrics.

Precision(i) = TP(i)

TP(i) + FP(i)
(6)

Macro Precision = 1
n

n∑
i=1

precision(i) (7)

Recall(i) = TP(i)

TP(i) + FN(i)
(8)

Macro Recall = 1
n

n∑
i=1

recall(i) (9)
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Macro F1-score = 1
n

n∑
i=1

2 ∗ precision(i) ∗ recall(i)
precision(i) + recall(i)

(10)

where TP(i), FP(i), FN(i) represent the number of true positives, false
positives and false negatives of class i, precision(i) and recall(i)
represent the precision and recall of class i, and n is the number
of classes.

Hyper-parameter optimization
There are many hyper-parameters that affect the model perfor-
mance, such as the value k of the k-mer node, the dimensionality
of the pre-trained word2vec embedding vector, the number of the
hidden neurons in GCN, the batch size, the learning rate and the
dropout rate. In the study, what we care about most is the effects
of transforming lncRNA sequences into de Bruijn Graphs on com-
putational results. Thus, we considered the value k of the k-mer
node, the dimensionality of the pre-trained word2vec embedding
vector, and the number of the hidden neurons in GCN as the major
tuning hyper-parameters. The value k of the k-mer node was
chosen from {2, 3, 4, 5, 6}, the dimensionality of the pre-trained
word2vec embedding vector was chosen from {64, 128}, and the
number of the hidden neurons in GCN was chosen from {64, 128}.
A grid search strategy was applied to find the best combination
of the three hyper-parameters. Finally, the best performance is
achieved when the three hyper-parameters are set to 4, 128 and 64,
respectively. Because the value k makes a non-negligible impact
on the performance of GraphLncLoc. Supplementary Figure S3
shows the performance of different k. The other hyper-parameters
are unchanged as follows: the dimensionality of the pre-trained
word2vec embedding vector is 128, and the number of the hidden
neurons in GCN is 64. We can observe that the results of 4-mer
outperform other k-mers. When k is set to 4, the ACC and Macro
F1-score are the highest, and the AUC competitive among all the
results. The possible explanation is that 2-mer and 3-mer are
unable to capture the essential features while 5-mer and 6-mer
are sparser than 4-mer.

Comparison with traditional machine learning
classifiers using different k-mer frequency
features
In previous studies, k-mer frequency features are the most
commonly used features. To evaluate the performance of
the GraphLncLoc and show the advantages of transforming
sequences into graphs for lncRNA subcellular localization
prediction, we compared GraphLncLoc with traditional machine
learning models with different k-mer frequency features. The
compared models include SVM, RF, logistic regression (LR) and
simple neural network (NN). We implemented these machine
learning models using the scikit-learn (v1.0.1) library. For the
SVM, RF and LR models, we used the default parameters in the
scikit-learn library. For NN, the number of neurons in the input,
hidden and output layers are set to 4k, 64 and 4, respectively. The
parameter k for the k-mer frequency features is set from 3, 4, 5
and 6. We used the average results of the 5-fold cross-validation
to evaluate the performance. The results are shown in Table 1.

From Table 1, we first focus on the results of machine learn-
ing models. In terms of Macro F1-score, SVM, RF, LR and NN
achieve the highest Macro F1-score at k = 3, k = 3, k = 6 and k = 5,
respectively. The results indicate that different machine learning
classifiers have their preferred k value for achieving the best
performance. Second, indicates better performance regarding all
evaluation metrics compared with other machine learning classi-
fiers using k-mer frequency features. The best machine learning

classifier is RF model with k = 3, which obtains 0.572 in ACC,
0.391 in Macro F1-score, 0.511 in Macro Precision and 0.380 in
Macro Recall. GraphLncLoc outperforms RF model with 3-mer
in terms of ACC (0.612), Macro F1-score (0.506), Macro Precision
(0.691) and Macro Recall (0.475). In summary, the results demon-
strate that GraphLncLoc performs better than these traditional
machine learning classifiers using different k-mer frequency fea-
tures, which shows the advantages of using graph vectors.

Comparison with deep learning baseline models
To demonstrate the effectiveness of GraphLncLoc (word2vec (4-
mer) + 5-mer frequency features + GCN + MLP), we compared it
with two deep learning baseline models.

1. Baseline 1: word2vec (4-mer) + 5-mer frequency features +
CNN + MLP, it converts lncRNA sequences to word embed-
ding learned by word2vec technique, and extracts 5-mer
frequency features, followed by a CNN layer and an MLP layer
to predict the subcellular localizations.

2. Baseline 2: word2vec (4-mer) + 5-mer frequency features +
LSTM + MLP, it converts lncRNA sequences to word embed-
ding learned by word2vec technique, and extracts 5-mer
frequency features, followed by a LSTM layer and an MLP
layer to predict the subcellular localizations.

Table 2 shows the performance comparison between
GraphLncLoc and the two deep learning baseline models. It is
worth noting that the input features are same in the three models.
From Table 2, we can observe that GraphLncLoc achieves the best
performance. More specifically, in terms of ACC, GraphLncLoc
improves about 5.52% compared to the CNN-based model, and
improves about 8.13% compared to the LSTM-based model. In
terms of Macro F1-score, GraphLncLoc improves about 25.87%
compared to the CNN-based model and improves about 19.06%
compared to the LSTM-based model. These results demonstrate
the effectiveness of our model.

Comparison with existing predictors on an
independent test set
To further evaluate the performance of GraphLncLoc in predicting
lncRNA subcellular localization, we compared GraphLncLoc with
existing predictors and evaluated them using an independent test
set which is provided by DeepLncLoc. Considering GraphLncLoc
predicts four subcellular localization categories including cyto-
plasm, nucleus, ribosome and exosome, we removed the samples
which belong to cytosol from the independent test set. To reduce
data redundancy between our constructed benchmark dataset
and the independent test set, we merged the two datasets and
used the CD-HIT-EST tool [26] with a cut-off value of 40% to
remove redundant sequences in the independent test set. Finally,
the independent test set contains 20 sequences from cytoplasm,
20 sequences from nucleus, 10 sequences from ribosome and 7
sequences from exosome (see Supplementary Figure S4).

We selected existing predictors following these criteria: (1)
there is an available web server or stand-alone version; (2)
the input only requires lncRNA sequences; (3) the output
contains predicted probabilities for subcellular localization.
As a result, lncLocator, iLoc-lncRNA, Locate-R, DeepLncLoc
and iLoc-lncRNA 2.0 satisfy these criteria. We did not com-
pare GraphLncLoc with lncLocator 2.0 because lncLocator
2.0 only provides the predicted cytoplasm/nucleus relative
concentration index (CNRCI) values instead of probabilities.
LncLocator and DeepLncLoc predict five subcellular locations,
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Table 1. Performance comparison of GraphLncLoc and different machine learning models using different k-mer frequency features

Model ACC Macro precision Macro recall Macro F1-score

k = 3

SVM 0.521 0.301 0.306 0.257
RF 0.572 0.511 0.380 0.391
LR 0.462 0.303 0.311 0.304
NN 0.391 0.276 0.278 0.260

k = 4

SVM 0.520 0.300 0.305 0.256
RF 0.572 0.523 0.373 0.377
LR 0.450 0.305 0.311 0.306
NN 0.398 0.309 0.302 0.285

k = 5

SVM 0.518 0.297 0.304 0.254
RF 0.572 0.535 0.364 0.360
LR 0.490 0.367 0.354 0.356
NN 0.468 0.413 0.326 0.318

k = 6

SVM 0.516 0.299 0.303 0.252
RF 0.564 0.530 0.355 0.346
LR 0.536 0.401 0.359 0.360
NN 0.485 0.333 0.307 0.271

GraphLncLoc 0.612 0.691 0.475 0.506

Note: The best performance values are highlighted in bold.

Table 2. Performance comparison of GraphLncLoc with the deep learning baseline models

Deep learning baseline
models

ACC Macro precision Macro recall Macro F1-score

Baseline 1 0.580 0.510 0.394 0.402
Baseline 2 0.566 0.557 0.425 0.425
GraphLncLoc 0.612 0.691 0.475 0.506

Note: The best performance values are highlighted in bold.

Table 3. Performance comparison of GraphLncLoc with existing predictors on the test set

Predictor ACC Macro precision Macro recall Macro F1-score

lncLocator 0.421 0.374 0.325 0.289
iLoc-lncRNA 0.509 0.524 0.470 0.474
iLoc-lncRNA 2.0 0.404 0.454 0.384 0.385
Locate-R 0.368 0.362 0.321 0.321
DeepLncLoc 0.561 0.673 0.543 0.582
GraphLncLoc 0.579 0.736 0.557 0.584

Note: The best performance values are highlighted in bold.

including nucleus, cytoplasm, cytosol, ribosome and exosome.
iLoc-lncRNA, Locate-R and iLoc-lncRNA 2.0 predict four subcel-
lular localizations, including nucleus, cytoplasm, ribosome and
exosome. To ensure a fair comparison, when comparing with
lncLocator and DeepLncLoc, we merged the output probabilities
of cytoplasm and cytosol as the output probability of cytoplasm.
Supplementary Table S1 shows the detailed prediction results
of GraphLncLoc with five existing predictors on the test set,
Table 3 shows the performance comparison of GraphLncLoc
with five existing predictors, Supplementary Figure S5 shows the
confusion matrices of GraphLncLoc with five existing predictors,
and Figure 3 shows the ROC curves of GraphLncLoc and five
existing predictors.

From the results in Table 3, it can be seen that GraphLncLoc
outperforms the other predictors in terms of all evaluation
metrics. GraphLncLoc achieves 0.579 in ACC, which is significantly
higher than lncLocator (0.421), iLoc-lncRNA (0.509), Locate-
R (0.368), DeepLncLoc (0.561) and iLoc-lncRNA 2.0 (0.404),
respectively. The other evaluation metrics (Macro Precision, Macro
Recall, Macro F1-score) and Figure 3 indicates similar results.
These results demonstrate that GraphLncLoc is an effective tool
to predict lncRNA subcellular localization.

Figure 3. ROC curves of GraphLncLoc and existing predictors on the
test set.

Effects of different species
In addition, we investigated the effects of different species
on classification results. The benchmark dataset covers six
different species, and Supplementary Table S2 shows the species
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distribution. From Supplementary Table S2, the Mus musculus
group contains 391 lncRNAs, the Homo sapiens group contains
373 lncRNAs and the other four species groups only have 1 or
2 lncRNAs. Furthermore, we analyzed the lncRNA subcellular
localization distribution of two species (H. sapiens and M. musculus)
in Supplementary Figure S6. We found that M. musculus only have
two types of subcellular localizations (cytoplasm and nucleus)
and H. sapiens have four types of subcellular localizations. We
evaluated the performance of GraphLncLoc on the two species.
Supplementary Table S3 shows the precision, recall and F1-score
for each subcellular localization of H. sapiens and M. musculus
groups, and Supplementary Figure S7 plots the ACC and AUC of
these two species. From Supplementary Table S3, we can observe
that the F1-score of H. sapiens is lower than that of M. musculus
for cytoplasm, while the F1-score of H. sapiens is higher than that
of M. musculus for nucleus. As shown in Supplementary Figure S7,
the ACC and AUC of the H. sapiens group are 0.555 and 0.727,
respectively, which is slightly lower than those of the M. musculus
group (0.670 and 0.863).

Effects of different graph construction methods
In the study, we focus on how to represent lncRNA sequences as
graphs for lncRNA subcellular localization prediction. To inves-
tigate the effectiveness and necessity of graph construction in
GraphLncLoc, we conducted an ablation study by substituting one
component from the model and evaluated the performance. We
highlighted two aspects: node features and weight normalization.
Specifically, we compared our proposed graph representation with
other different graph representations.

(1) One-hot node features: it uses one-hot coding method to
encode the node feature vector of 4-mer nodes in the graph.

(2) Without weight normalization: it assigns weights to edges
using the original frequency without normalization.

(3) Normalized weight (in-degree): it assigns the weights to
edges only considering the aggregating messages by each
node’s in-degrees. Formally, the formula is as follows:

wnorm = eji∑
q∈N(i) eqi

(11)

where eqi denotes the frequency weight of the edge from node q
to node i, N(i) denotes the set of neighbor nodes of node i.

Table 4 shows the performance of GraphLncLoc and its variant
graph construction methods. From Table 4, we can observe
that when using one-hot coding node features, ACC, Macro
F1-score and AUC decreased by 20.7%, 32.4% and 6.5%, respec-
tively, emphasizing the importance of word2vec technique.
Moreover, we can observe that without weight normalization,
ACC, Macro F1-score and AUC decreased by 5.7%, 16.2% and
0.6%, respectively, which demonstrates the importance of weight
normalization. Moreover, we used different methods to normalize
the edge weights. The ‘in-degree’ type normalization method only
considers the relationship of node’s in-degree. GraphLncLoc takes
into account both the relationship of node’s in-degree and out-
degree. The results demonstrate that using our normalization
method is better. Compared to the ‘in-degree’ type, ACC and
Macro F1-score improved by about 5.2% and 6.3%, and AUC only
drops slightly. In summary, the model of using word2vec vectors
as node features and considering both the relationship between
node’s in-degree and out-degree in weight normalization has the
best performance, which proves the effectiveness of our method.

t-SNE visualization of graph vectors and different
feature representation methods
To show the differences between graph vectors and different
coding/representation features, we visualized the embedding
spaces of them by projecting them into two dimensions using
the t-distributed stochastic neighbor embedding (t-SNE). Figure 4
displays the t-SNE visualization of 4-mer frequency features, 5-
mer frequency features, combining 4-mer embedding vectors with
4-mer frequency features, combining 4-mer embedding vectors
with 5-mer frequency features and graph vectors. The different
subcellular localization classes are marked with different colors.
As shown in Figure 4(a) and (b), the two figures are very similar,
the four types of samples in the feature space are distributed
close, which suggests that the k-mer frequency features are
not distinguishable features. From Figure 4(c) and (d), we can
see that the four types of samples in the feature space are
distributed loose. From Figure 4(e), we noted that the four types of
samples are distributed more clearly compared to other feature
representation methods. The results demonstrate the benefits
of applying graph vectors, implying that the learned graph
vectors can clearly distinguish between different subcellular
localizations.

Robustness analysis between GraphLncLoc and
k-mer frequency features
To further show the advantages of transforming sequences into
graphs, we conducted some experiments to test the robustness of
GraphLncLoc and k-mer frequency features. From the perspective
of machine learning model design, if a lncRNA sequence changes
slightly, a robust feature representation method should basically
remain unchanged. In other words, a robust feature represen-
tation method should be resistant to the minor changes that
actually occur during the input data [30, 31]. if a perturbed input
results in the model outputting an incorrect answer with high
confidence, then the model is considered with poor generalization
and hard to be applied to the samples out of the training dataset.
Thus, a robust model should keep the stability of prediction
performance under small input perturbations ideally. Based on
the theory, we performed robustness analysis to measure stability
quantitatively. First, we generated a ‘mutated’ dataset from the
original dataset by introducing three mutation actions includ-
ing insertion, deletion and mutation. Specifically, the ‘mutated’
dataset is generated as follows:

1. Set a point mutation rate M;
2. For each nucleotide in a lncRNA sequence, we randomly

generate a probability. If the probability is larger than the
point mutation rate M, the nucleotide keeps the same; if the
probability is smaller than or equal to the point mutation
rate M, we randomly execute one of three actions to change
the nucleotide.

Action 1 (insertion): we randomly insert a nucleotide (A, U, C,
G) before the nucleotide;

Action 2 (deletion): we delete the nucleotide in the sequence;
Action 3 (mutation): we randomly change the nucleotide to

another three types of nucleotides.

3. Repeat step 2 for all lncRNA sequences in our benchmark
dataset, until all sequences have been ‘mutated.’

It is worth noting that during the generating process, the labels
of lncRNA sequences are not changed. After the generation pro-
cess, we obtained a ‘mutated’ dataset from the original dataset.
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Table 4. The performance of GraphLncLoc and its variant graph construction methods

Representation method ACC Macro F1-score AUC

One-hot node features 0.485 0.342 0.753
Without weight normalization 0.577 0.424 0.800
Normalized weight (in-degree) 0.580 0.474 0.811
Our method 0.612 0.506 0.805

Note: The best performance values are highlighted in bold.

Figure 4. T-SNE visualization of 4-mer frequency features, 5-mer frequency features, combining 4-mer embedding vectors with 4-mer frequency features,
combining 4-mer embedding vectors with 5-mer frequency features and graph vectors. Each dot represents a sample and its color represents its true
class. (A) using 4-mer frequency features, (B) using 5-mer frequency features, (C) combining 4-mer embedding vectors with 4-mer frequency features,
(D) combining 4-mer embedding vectors with 5-mer frequency features, (E) using graph vectors.

Then, we used GraphLncLoc and k-mer frequency features to
encode the sequences in the ‘mutated’ dataset, and compared the
differences with the original dataset. Because GraphLncLoc uses
4-mer as the node, and RF model achieves the best performance
in traditional machine learning models (see Table 1), we used
4-mer + RF as the baseline for comparison. We queried some
databases and found that the human genome mutation rate is
estimated to be about 1 × 10−8. However, a low mutation rate on
input sequences basically has no effect on the machine learning
model. Thus, we set the point mutation rates of 0.001 and 0.0001
to see the differences between the original and ‘mutated’ datasets.
The results are shown in Figure 5.

From Figure 5, we can observe that the results are basically
unchanged when M is 0.0001. When M is 0.001, in terms
Macro F1-score, 4-mer + RF decreases from 0.377 to 0.325
(about 13.8%) while GraphLncLoc decreases only from 0.506
to 0.493 (about 2.6%). We could discern that the robustness
of GraphLncLoc is better than 4-mer + RF, which implies the
robustness of using graph vectors is better than using k-
mer frequency features. The other evaluation metrics (Macro
Precision and Macro Recall) indicate similar results. Thus, the
evaluation of GraphLncLoc on the ‘mutated’ dataset confirmed its
robustness.

Case study
To further show the ability to capture motifs of GraphLncLoc, we
performed a case study on lncRNA RP11-57H14.2. The organism of
lncRNA RP11-57H14.2 is H. sapiens and the tissue of lncRNA RP11-
57H14.2 is K562 cell line. The subcellular localization of lncRNA
RP11-57H14.2 is nucleus. After transforming the sequence into a
graph by our method, the constructed graph has 236 nodes and
545 edges. We found a known motif associated with subcellular
localization. According to Zhang et al. [32], motif AGCCC acts
as a general nucleus localization signal. Since motif AGCCC is
a 5-mer motif and the constructed graph used 4-mer as the
nodes, we measured the importance of motif AGCCC by measur-
ing the importance of node AGCC and node GCCC. Specifically,
we obtained all vectors for each node in the constructed graph,
and then used mean aggregation to obtain a new vector of any
two adjacent nodes in the constructed graph. Lastly, we used the
cosine function to calculate the similarity between the new vector
and the whole graph vector. The output value is treated as the
importance score which is in the range of 0 to 1. The larger score
of the importance score is, the more important the corresponding
motif is. Figure 6(a) shows the top 10 most important 5-mer motifs
captured by GraphLncLoc. We can see that motif AGCCC obtains
the highest importance score. Moreover, motif AGCCA is the sec-
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Figure 5. The performances of GraphLncLoc on original and ‘mutated’ datasets under different mutation rates. (A) Mutation rate is 0.0001, (B) mutation
rate is 0.001.

ond important motif. The two motifs have the same 4-mer ‘AGCC,’
which shows the importance of a small community (the core node
is AGCC). Before we conducted the experiment, we envisioned that
the importance score has a strong relationship with the 5-mer fre-
quency, i.e. 5-mers with higher frequency tend to be more impor-
tant. Thus, we plotted the 5-mer frequency distribution of lncRNA
RP11-57H14.2 in Figure 6(b). The frequency of motif AGCCC is 4
in lncRNA RP11-57H14.2. We can observe that there are several
motifs whose frequency is greater than or equal to AGCCC. The
observation implies that the importance score does not have a
strong relationship with frequency, which indicates that our net-
work structure really captured the important motifs. In summary,
our results are consistent with Zhang et al.’s findings [32].

GraphLncLoc web server
To facilitate researchers using GraphLncLoc to predict lncRNA
subcellular localization, a user-friendly web server was developed.
Users can access this web server by visiting http://csuligroup.
com:8000/GraphLncLoc/. A step-by-step guide is given as follows.

Step 1: Type a query lncRNA sequence into the input box. The
GraphLncLoc web server accepts the input sequence with the
length from 200 to 100 000. The form of the input sequence should
be in FASTA format. Users can access the example sequence by
clicking the Example button.

Step 2: After typing a lncRNA sequence, click the Submit button
to submit the lncRNA sequence to GraphLncLoc. GraphLncLoc
usually takes less than 5 s to calculate the predicted probability
of the lncRNA subcellular localization.

Step 3: The results are shown in a table with five columns,
column 1 is the sequence ID, columns 2–5 are the four subcel-
lular localizations and the corresponding predicted probabilities.
Finally, the final predicted positions are marked in red and dis-
played at the bottom of the table.

Discussion
In this study, we proposed GraphLncLoc, a GCN-based deep learn-
ing model for predicting lncRNA subcellular localization pre-
diction. Compared with previous studies, GraphLncLoc has two
main novel design ideas: (i) GraphLncLoc is the first method to
transform lncRNA sequences into graphs in lncRNA subcellular
localization prediction; (ii) to extract high-level features of the
constructed graph, GraphLncLoc applies GCN to learn the latent
representations. To evaluate the performance of GraphLncLoc,
we conducted extensive experiments and the results show that
GraphLncLoc outperforms traditional machine learning methods
and existing predictors. Finally, we developed a user-friendly web
server. We believe that GraphLncLoc is an effective tool for pre-
dicting lncRNA subcellular localization.

Although the prediction performance of GraphLncLoc is
promising, there are still several limitations of the model.

(1) We only used lncRNA sequence information as node fea-
tures, and did not consider integrating other biological infor-
mation. Obviously, utilizing some relevant biological infor-
mation can better predict lncRNA subcellular localization.
Therefore, in future work, if we can collect more useful
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Figure 6. (A) Top 10 most important motifs captured by GraphLncLoc. The x-axis shows the importance scores and the y-axis shows the top 10 most
important 5-mer motifs captured by GraphLncLoc. (B) The 5-mer frequency distribution of lncRNA RP11-57H14.2. The x-axis shows the frequencies of
5-mer and the y-axis shows the counts of 5-mers for each frequency.

lncRNA biological information, we can enrich the feature
representation to train a more powerful model.

(2) To reduce the computational time and cost, we did not
attempt to use complex GCN models to extract high-level
features from sequence information. With the rapid devel-
opment of deep learning and natural language processing
fields, many powerful encoders and network architectures
will be proposed. Therefore, we will continue to follow the
development of cutting-edge deep learning techniques and
try to use more powerful network architecture to predict the
lncRNA subcellular localization.

(3) We used a fixed k in our study to construct the de Bruijn
graph. Although the constructed graph has the ability to con-
nect nodes to form paths, and then capture specific patterns
or motifs, it fails to capture too long dependencies. Therefore,
considering using different values of k would be possible to
provide multi-scale information, which is a promising future
direction.

(4) We only considered the lncRNAs that are associated to only
one subcellular localization. However, in reality, many lncR-
NAs have multiple subcellular localizations. For example,
lncRNA SNHG1 displays cytoplasmic distribution in human
HCT116 colon cancer cells. Upon DNA damage stress, they
are retained in the nucleus compartment. Although some
computational methods have been developed, few of them
are designed for lncRNAs with multiple subcellular localiza-
tions. Thus, considering lncRNAs with multiple subcellular
localizations is necessary and useful. In the future, we expect
to collect more labeled lncRNAs with multiple subcellular
localizations, and then we can use more samples to train
a more powerful model. In addition, we will change some
components in our model to make it from a multi-class
classifier to a multi-label classifier, such as changing the
cross-entropy loss function to the binary cross-entropy loss
function, and changing the softmax function to the sigmoid
function in the output layer.

Most existing computational methods struggle to deal with
variable-length lncRNA sequences. We proposed a novel paradigm
for lncRNA subcellular localization prediction by transforming
sequences into graphs. We believe that the encoding method in
GraphLncLoc can be used as a general representation method for
biological sequences. It is expected to be applied to other biologi-
cal sequence prediction problems, such as mutation prediction of
influenza viruses [33], drug–protein prediction [34], essential gene
prediction [35] and binding-site prediction [36, 37].

Key Points

• We proposed a sequence-based graph convolutional net-
work model called GraphLncLoc to predict lncRNA sub-
cellular localization.

• GraphLncLoc transforms lncRNA sequences into de
Bruijn graphs, which can keep local order information of
lncRNA sequences and automatically capture patterns
and motifs of different lengths in lncRNA sequences.

• Extensive experiments demonstrated that GraphLncLoc
achieves better performance than the existing predic-
tors.

• Our analyses showed that transforming sequences into
graphs has more distinguishable features and is more
robust than k-mer frequency features. The case study
showed that GraphLncLoc can uncover important motifs
for nucleus subcellular localization.

• The user-friendly web server of GraphLncLoc is available
at http://csuligroup.com:8000/GraphLncLoc/.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.

Data availability
GraphLncLoc web server is available at http://csuligroup.
com:8000/GraphLncLoc/. Code is available at https://github.com/
CSUBioGroup/GraphLncLoc.
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