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Abstract

Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 nucleotides. A growing amount of
evidence reveals that subcellular localization of lncRNAs can provide valuable insights into their biological functions.
Existing computational methods for predicting lncRNA subcellular localization use k-mer features to encode lncRNA
sequences. However, the sequence order information is lost by using only k-mer features. We proposed a deep learning
framework, DeepLncLoc, to predict lncRNA subcellular localization. In DeepLncLoc, we introduced a new subsequence
embedding method that keeps the order information of lncRNA sequences. The subsequence embedding method first
divides a sequence into some consecutive subsequences and then extracts the patterns of each subsequence, last combines
these patterns to obtain a complete representation of the lncRNA sequence. After that, a text convolutional neural network
is employed to learn high-level features and perform the prediction task. Compared with traditional machine learning
models, popular representation methods and existing predictors, DeepLncLoc achieved better performance, which shows
that DeepLncLoc could effectively predict lncRNA subcellular localization. Our study not only presented a novel
computational model for predicting lncRNA subcellular localization but also introduced a new subsequence embedding
method which is expected to be applied in other sequence-based prediction tasks. The DeepLncLoc web server is freely
accessible at http://bioinformatics.csu.edu.cn/DeepLncLoc/, and source code and datasets can be downloaded from https://
github.com/CSUBioGroup/DeepLncLoc.
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Introduction
Non-coding RNAs have attracted lots of attention from research-
ers and are associated with the development of various human
diseases [1, 2]. Long non-coding RNAs (lncRNAs) are a type of
non-coding RNA molecules (more than 200 nucleotides) that
are transcribed from DNA but not translated into proteins
[3, 4]. LncRNAs play an important role in various biological
processes including regulation of gene expression, alternative
splicing, nuclear organization and genomic imprinting [5–7].
For example, lncRNAs can bind to DNAs, RNAs and proteins,
and then perform their functions through these interactions
[8]. LncRNAs can act as ‘miRNA sponge’ to regulate the level
of miRNA and then affect the expression of miRNA’s target [9].
LncRNAs can regulate transcriptional activity or pathways under
specific stimulation [10]. Due to the complexity of molecular
functions, lncRNA-related studies are drawing increasing
attention [11].

A growing amount of evidence reveals that the subcellular
localization of biomacromolecules can provide valuable insights
into their functions [12–14]. For example, lncRNA ‘XIST’,
which locates in nucleus, interacts with the nuclear-matrix
factor hnRNPU and modulates nuclear architecture and trans-
chromosomal interactions [15]. LncRNA ‘lincRNA-p21’, which
locates in cytoplasm, regulates JUNB and CTNNB1 translation
in HeLa cells [16]. LncRNA ‘ZFAS1’, which locates in ribosome,
regulates mRNAs encoding proteins from the ribosomal complex
[17]. Thus, identification of lncRNA subcellular localizations is
very important to understand lncRNA functions [18]. Recently,
some large databases of RNA-associated subcellular localization
were released. Zhang et al. published a database, RNALocate
[19], to collect the subcellular localization of different kinds of
RNAs, which contains more than 23 100 RNAs with 42 subcellular
localizations in 65 species. Mas Ponte et al. developed a database
called LncATLAS to display the subcellular localization of
lncRNAs [20]. Wen et al. [21] created a lncRNA subcellular
localization database called lncSLdb, which collects 14 973
subcellular localization information of lncRNAs from three
species (human, mouse and fruitfly).

However, only a few computational predictors for lncRNA
subcellular localization have been proposed. To the best of our
knowledge, the first predictor is lncLocator [22]. LncLocator uses
4-mer features and high-level features extracted by stacked
autoencoder, and feeds the two kinds of features into two
kinds of classifiers [support vector machine (SVM) and random
forest (RF)], respectively. Then, lncLocator uses an ensemble
strategy to combine the results of different classifiers and
get the final prediction. In their training process, lncLocator
utilizes a supervised over-sampling algorithm to balance the
ratio of different classes. After that, Su et al. [23] proposed iLoc-
lncRNA which uses 8-mer features to encode lncRNA sequences.
Considering the dimension of 8-mer features is too large, iLoc-
lncRNA applies a feature selection method based on binomial
distribution to select the most optimal features. Then, iLoc-
lncRNA feeds the most optimal features into SVM to get the
prediction results. Gudenas and Wang proposed DeepLncRNA
[24] which uses 2, 3, 4 and 5-mer features to encode lncRNA
sequences and adds additional features (RNA–binding motifs
and genomic loci). Then, the combined features are fed into a
neural network (NN) to obtain the final prediction. Fan et al. [25]
developed lncLocPred, which selects important features of 5,
6, 8-mer features and combines triplet and PseDNC features.
Last, lncLocPred applies a logistic regression (LR) model to

make predictions. Wang et al. [26] developed an integration
SVM model, which uses multiple sequence features including
k-mer, reverse compliment k-mer, nucleic acid composition,
di-nucleotide composition, tri-nucleotide composition and
k-spaced nucleic acid pair to predict multiply subcellular
localizations.

Although these computational predictors achieve decent per-
formance, several improvements can still be made. Encoding raw
lncRNA sequences into discriminative features is very impor-
tant in developing machine learning models. The flaw of these
predictors is the use of k-mer features to encode raw lncRNA
sequences. Apparently, using k-mer features cannot keep the
sequence order information of the raw lncRNA sequence.

To overcome the limitation, we developed DeepLncLoc, a
new deep learning-based predictor for subcellular localization of
lncRNAs. In the predictor, we proposed a new feature embedding
method that keeps the order information of lncRNA sequences.
The main idea of the new feature embedding method is encoding
a complete lncRNA sequence by using the combination of
its subsequence embeddings. In DeepLncLoc, we first divided
a sequence into some consecutive subsequences and then
extracted the patterns of each subsequence by using an average
pooling layer, last combined these patterns to obtain a complete
representation of the lncRNA sequence. After obtaining the
complete representation, a text convolutional NN (textCNN)
was applied to learn high-level features and perform the
prediction task. Different from traditional machine learning
models with k-mer features in previous studies, DeepLncLoc has
two advantages: (i) by using the new subsequence embedding
method, the input lncRNA sequence keeps the sequence order
information; (ii) textCNN has a more powerful capability of
high-level feature extraction.

We conducted extensive experiments to evaluate the per-
formance of DeepLncLoc. Comparison with traditional machine
learning models using different k-mer features demonstrated
the advantages of using deep learning structure instead of using
traditional machine learning models. Comparison with some
popular representation methods indicated the advantages of
using subsequence embedding to encode the whole lncRNA
sequence. Comparison with existing predictors on an indepen-
dent test set showed the capability of DeepLncLoc to predict
subcellular localization of lncRNAs. Moreover, we investigated
the effects of different species. Finally, we developed a user-
friendly web server. We anticipate that DeepLncLoc will serve as
a useful bioinformatics tool for accurate prediction of lncRNA
subcellular localization.

Materials and Methods
Datasets

Similar to previous studies, we retrieved known subcellular
localization information of lncRNA from RNALocate database
[19]. The current version of RNALocate collects 42 190 manually
curated RNA-associated subcellular localization entries with
experimental evidence. It contains more than 23 100 RNAs
with 42 subcellular localizations in 65 species. We generated a
benchmark dataset to train and test our model by the following
procedure:

(i) All 42 190 manually curated RNA-associated subcellular
localization entries are downloaded from RNAlocate
database.
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Table 1. Distribution of the constructed benchmark dataset

Subcellular localization # of samples

Cytoplasm 328
Nucleus 325
Ribosome 88
Cytosol 88
Exosome 28
Total 857

(ii) Total 2383 manually curated lncRNA-associated subcellu-
lar localization entries are selected from 42 190 manually
curated RNA-associated subcellular localization entries.

(iii) Some lncRNAs have multiple entries in the extracted
entries; we merged these entries with the same gene
name. Then, we removed the lncRNAs that do not have
sequence information in NCBI and Ensembl.

(iv) Because most lncRNAs only have one subcellular local-
ization, we selected the lncRNAs that are located in one
location for model construction in the study.

(v) The filtered dataset covers seven different subcellular
localizations. Two of seven subcellular localizations only
have a very small number of samples (less than 10). Thus,
we removed these lncRNAs that are located in the two
subcellular localizations.

Finally, we constructed a benchmark dataset of 857 lncRNAs,
covering 5 subcellular localizations including nucleus, cytosol,
ribosome, cytoplasm and exosome (see Supplementary Figure S1,
see Supplementary Data available online at http://bib.oxfordjou
rnals.org/). Table 1 lists the distribution of the constructed
benchmark dataset.

Limitations of using only k-mer features to encode RNA
sequences

Before putting raw RNA sequences into a machine learning
or deep learning model, RNA sequences need to be encoded
as numeric vectors. There are two kinds of widely used RNA
sequence embedding methods. The first one is encoding each
nucleotide into a 4-dimensional one-hot vector. The A, C, G and
U are encoded with a one-hot vector of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1,
0) and (0, 0, 0, 1), respectively (Pan et al., 2019). Then, the four types
of vectors are used to encode RNA sequences. However, using
one-hot encoding has two disadvantages in practice. The first
disadvantage is that one-hot vector is sparse, i.e. only a small
fraction of features contribute to the prediction task. The second
disadvantage is that using one-hot encoding is difficult to accu-
rately represent the similarity between different nucleotides.
The second method is using k-mer features to encode RNA
sequences. The k-mer feature encoding method is very simple to
implement, and it maps lncRNA sequences with variable-length
to a vector with a fixed dimension. Thus, k-mer feature encoding
method is the most widely used method in the prediction of
lncRNA subcellular localization. Previous methods (LncLocator
[22], iLoc-lncRNA [23], DeepLncRNA [24], lncLocPred [25] and
Wang et al. [26]) use k-mer features for lncRNA embedding.
Formally, we assume a lncRNA sequence is represented as

lncRNA = B1, B2, B3, ..., BL−1, BL, (1)

Figure 1. Illustration of the k-mer encoding method for single RNA sequence,

where k is set to 3. The example RNA sequence is ‘ACCGUUCCGA’, and its 3-mer

features are {ACC, CCG, CGU, GUU, UUC, UCC, CCG, CGA}. It should be noted that

‘CCG’ appears twice, while other 3-mer features (such as ‘ACC’) appear only once

in the 3-mer features, and thus, the vector position which corresponds to ‘GGG’

is 2 and other 3-mers (such as ‘ACC’) is 1.

where L denotes the length of the lncRNA; Bj is one of the four
nucleotide bases (A, C, G and U) in the j position of the lncRNA
sequence.

For a given k, k-mer features represent the frequency of
individual k-mer from lncRNA sequences. We take 3-mer as an
example, each position can take four nucleotide bases (A, C, G
and U), and thus, we have 43, i.e. 64 3-mer features (AAA, AAC,
. . . , UUG, UUU). Then, we can use a 64-dimensional vector to
represent a lncRNA sequence, and each dimension is used to
record the frequency of a certain 3-mer. Figure 1 plots the 3-mer
encoding method for a single RNA sequence. The k-mer feature
encoding method is very simple to understand and implement.
But there is a disadvantage of using k-mer features. Namely,
k-mer feature encoding method lost order information of the
raw lncRNA sequence. k-mer features encoding method is only
concerned with the occurrence of the k-mer and ignores the
position of k-mer in the raw lncRNA sequence. For example, RNA
A is ‘ACACACGCGC’, 3-mer features of RNA A are {ACA, CAC,
ACA, CAC, ACG, CGC, GCG, CGC}, we reverse the RNA sequence
to obtain RNA B ‘CGCGCACACA’ and the 3-mer features of RNA
B are {CGC, GCG, CGC, GCA, CAC, ACA, CAC, ACA}. It can be
seen that the order of the two RNA sequences is reversed, but
their 3-mer features are very similar. The difference between the
two 3-mer features is only one 3-mer (‘ACG’ in RNA A versus
‘GCA’ in RNA B). When using the 64-dimensional 3-mer vector
to encode the two RNA sequences, only two dimensions are
different.

Subsequence embedding

In order to tackle the limitation, we proposed an effective
subsequence embedding method to keep the sequence order
information of lncRNAs. The main idea is that we split a lncRNA
sequence into some consecutive subsequences with no overlap
and then extract the patterns of each subsequence; last, we
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Table 2. Frequently used notations and their descriptions in this
paper

Notation Description

k the length of k-mer
n the number of subsequences
Si the ith subsequence of the raw lncRNA
Lsi the length of the ith subsequence
D the dimension of the pre-trained vector

combine these patterns to obtain a complete representation of
the lncRNA sequence. In this way, we can keep the sequence
order information. The idea is motivated by spatial pyramid
pooling-net [27]. He et al. proposed spatial pyramid pooling-
net to obtain the features from arbitrary sub-images to
generate fixed-length representations for the entire image.
We transferred and modified their idea to encode lncRNA
sequences.

First, we give the frequently used notations and their descrip-
tions in Table 2. We split a lncRNA sequence into n consecu-
tive subsequences, and thus, we denote a lncRNA sequence as
another representation form

lncRNA = S1, S2, S3, ..., Sn−1, Sn, (2)

where n is the number of subsequences and Si is the ith subse-
quence. We denote Lsi as the length of Si. After dividing a lncRNA
sequence into n subsequences, the next step is encoding these
subsequences. In our study, we used a word embedding tech-
nique to encode subsequences. Word embedding techniques
have shown promise in many natural language processing (NLP)
applications including text classification, sentiment analysis
and part-of-speech tagging. The core idea is as follows: we used
word2vec embedding like NLP training word vectors, all RNAs
in our dataset formed the corpus, the 4k types of k-mer formed
the vocabulary and each RNA is the sentence in the corpus.
We treated each k-mer in k-mer splitting sequence as a ‘word’
in the sentence, and pre-trained language model with lncRNA
sequences in our dataset to obtain the distribution represen-
tation of k-mer by using word2vec technique, last used the
distribution representation of k-mer features to represent sub-
sequences. We take 2-mer as an example to show the process. k
is set to 2, the stride window is set to 1 and a lncRNA sequence
can be split into a k-mer sequence. There are 16 types of 2-
mer {‘AA’, ‘AC’, ‘AG’, ‘AU’, ‘CA’, ‘CC’, ‘CG’, ‘CU’, ‘GA’, ‘GC’, ‘GG’,
‘GU’, ‘UA’, ‘UC’, ‘UG’, ‘UU’}, and the 16 types of 2-mer formed
the vocabulary. RNA A is ‘ACACACGCGC’ and 2-mer splitting of
RNA A is {AC, CA, AC, CA, AC, CG, GC, CG, GC}; 2-mer splitting of
RNA A is treated as a sentence, and each 2-mer in the splitting
(‘AC’, ‘CA’, . . . , ‘GC’) is treated as ‘word’. Then, we trained a
k-mer language model KM through word2vec technique, and
then the vector of each k-mer Vk-mer is obtained by the k-mer
model KM.

Vk−mer = KM (k − mer). (3)

Finally, RNA A can be represented as {VAC, VCA, VAC, VCA,
VAC, VCG, VGC, VCG, VGC}. Word2vec is a popular word embed-
ding technique [28], and its variant algorithms are widely used
in network learning field [29–31]. It aims at learning a dense

vector automatically for each word in a corpus. The word2vec
technique has two models: skip-gram and continuous bag of
words model. The skip-gram model uses the central word to
predict context words. In the training process, we maximized
the co-occurrence likelihood function of the central word and
corresponding context words. In our study, we used gensim
library to learn k-mer features of lncRNA sequences [32]. The
parameter k is chosen from {1, 2, 3, 4, 5, 6} to find the best splitting
way of lncRNAs.

The steps of subsequence embedding (see the subsequence
embedding part in Figure 2) are described as follows:

(i) We first built the k-mer corpus, which consists of all k-mer
sequences built by splitting lncRNA sequences.

(ii) We used gensim library to learn representation vectors of
k-mer of all lncRNA sequences.

(iii) For a given lncRNA, we split it into n subsequences, where
the length of each subsequence is Lsi.

(iv) According to the k-mer splitting of lncRNA, we found
the pre-trained vector of each k-mer and then combined
these vectors into a matrix as the representation of a
subsequence.

Last, we converted each lncRNA subsequence into a matrix
whose dimension is D × (Lsi − k + 1), which is the actual input for
our deep learning model.

Network architecture

So far, we have obtained the representation of each subsequence.
The question then arises: how can we predict the subcellular
localization by using the representation of subsequences. We
have n subsequences, and the representation of each subse-
quence is a matrix whose dimension is D × (Lsi − k + 1). If
we put them together directly, the dimension is n × D × (Lsi −
k + 1), which has two disadvantages. First, the length of different
subsequence Lsi in different lncRNA sequences is not the same.
If we put them together directly, we must pad them to the
same length. It means we have to fill a lot of zeros at the end
of the raw sequence, which brings many meaninglessness in
representation vectors. Second, the dimension is too large after
putting them together directly, which causes a lot of computa-
tional waste. To tackle the two limitations, we use an average
pooling layer to extract the patterns in each channel of the
subsequence. By using the average pooling layer, the dimension
of each subsequence is reduced from D × (Lsi − k + 1) to D. It can
be seen that D is the dimension of the pre-trained vector of k-mer
and has no relationship with the length of lncRNA subsequence
Lsi. By using this method, we do not need to pad with zeros and
reduce the dimension.

After obtaining the representation of each subsequence by
using an average pooling layer, we combined them together
to obtain the complete representation of the whole lncRNA
sequence. Then the next step is predicting the subcellular
localization. TextCNN is a kind of powerful deep learning
network structure that is used for text classification. Traditional
CNNs are two-dimensional CNNs that are used to process two-
dimensional image data. Actually, a text can be treated as a
one-dimensional image, so that we can use one-dimensional
CNN to extract the features of the text. TextCNN uses a one-
dimensional convolutional layer and a max-pooling layer to
extract the features of sequence [33]. Inspired by its success
in bioinformatics [34], we used textCNN to extract the features
of the complete representation. Specifically, we have n subse-
quences, and the representation of each subsequence is D. We
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Figure 2. Illustration of the deep NN structure. This figure is only an example. The network structure consists of three parts: subsequence embedding, an average

pooling layer and a textCNN. The input is a lncRNA sequence with a length of 400. The lncRNA sequence is split into four subsequences. The sequence embedding part

has four steps. After subsequence embedding, we use an average pooling layer to extract the patterns of each subsequence. Then, we combine these patterns together

to obtain a matrix as the representation of the whole lncRNA sequence. Last, a textCNN is employed to learn high-level features and perform the prediction task.

combined them together to form a matrix whose dimension is
n × D to represent the whole sequence. The representation of the
lncRNA sequence can be treated as a one-dimensional image,
the width is n, the height is 1 and the channel is D. To extract
high-level features, textCNN uses three convolutional kernels
(sizes = 1, 3, 5) to capture the correlation of adjacent nucleotides.
Then, textCNN performs a max-pooling layer on all channels to
obtain the most remarkable features and reduce the dimension
of the output vector. Last, the output vectors of the max-
pooling layer are concatenated together as the input of a fully
connected layer with a softmax function to perform the final
prediction. Figure 2 gives a schematic view of the whole network
structure.

Evaluation metrics

Similar to previous studies [22–24], we used accuracy (ACC),
Macro F-measure and area under the receiver operator char-
acteristic curve (AUC) as evaluation metrics to evaluate
DeepLncLoc and other methods in the study.

Accuracy = Num
(
Pred = Label

)

Num
(
samples

) (4)

precision(i) = TP(i)

TP(i) + FP(i)
(5)

recall(i) = TP(i)

TP(i) + FN(i)
(6)

Macro F − measure = 1
m

m∑

i=1

2 ∗ precision(i) ∗ recall(i)

precision(i) + recall(i)
, (7)

where TP(i), FP(i) and FN(i) represent the number of true positives,
false positives and false negatives of the class i, respectively.

Implementation details

DeepLncLoc is implemented with PyTorch [35]. The loss function
used in DeepLncLoc is the focal loss of non-α-balanced form [36].
It is used for object detection to address this class imbalance
problem. It is defined as follows:

Focal Loss = − 1
m

∑
y
(
1 − ypred

)γ log
(
ypred

)
, (8)

where m is the number of training samples, y is the true label,
ypred is the predicted label and γ is the focusing parameter (we
set γ to 2, according to Lin’s paper [36]).

Skip-gram model [28] is used to pre-train the vectors of k-
mer for embedding. In textCNN, three convolutional kernels
(sizes = 1, 3, 5, filter number = 128) are used to extract the high-
level features of adjacent nucleotides. The fully connected layer
in the classification part has 384 neurons. To avoid overfitting,
dropout rates of 0.3 and 0.5 are applied in the embedding layer
and the fully connected layer, respectively. Finally, we trained
DeepLncLoc using the Adaptive Momentum optimizer; the initial
learning rate is set to 0.001.
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Results and Discussion
Hyper-parameter optimization for DeepLncLoc

We used 5-fold cross-validation (5-fold CV) to tune the hyper-
parameters of DeepLncLoc based on the value of Macro F-
measure. In our model, many hyper-parameters affect the
computational results, such as the parameter k, the number of
subsequences, the dimension of the pre-trained vector of k-mer,
initial learning rate and kernel sizes. In the study, we cared about
most is the effect of subsequence embedding on computational
results. Thus, we considered the parameter k, the number of
subsequences n and the dimension of the pre-trained vector of
k-mer D as the major tuning hyper-parameters. A grid search
strategy was applied to find the best combination of the three
hyper-parameters. The parameter k was chosen from {1, 2, 3,
4, 5, 6}, the number of subsequences n was chosen from {16,
32, 64, 128, 256} and the dimension of pre-trained vector D was
chosen from {64, 128}. We tuned these hyper-parameters to find
the final model parameters (see Supplementary Table S1, see
Supplementary Data available online at http://bib.oxfordjourna
ls.org/). From Supplementary Table S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/, it is very hard
to determine the parameters directly. We analyzed and found
that the performance is unstable when k and n are too high or
too low. In order to ensure the generalization of DeepLncloc, k, n
and D are set to 3, 64 and 64, respectively. In this setting, the ACC,
Macro F-measure and AUC obtained by DeepLncLoc are 0.548,
0.421 and 0.820, respectively.

Comparison with traditional machine learning
classifiers with different k-mer features

Considering that traditional machine learning classifiers with k-
mer features are widely used in the prediction of lncRNA subcel-
lular localization, we compared DeepLncLoc with four traditional
machine learning models including SVM, RF, LR and simple NN.
We implemented all machine learning models in scikit-learn (v
0.21.1) library in Python. For SVM, we used rbf kernel. For LR
and RF, we used the default parameters in scikit-learn. For NN,
the input, hidden and output layers use 4k, 64 and 5 neurons,
respectively. The parameter k in these machine learning models
was chosen from {3, 4, 5, 6}. We did not consider the lower and
higher k because much lower or higher k will increase the risk of
underfitting or overfitting. For example, the dimension of 2-mer
features is 42, i.e. 16, which hardly encodes the diversity of all
sequences in the database. In this case, the model has a high risk
of underfitting. The dimension of 7-mer features is 47, i.e. 16 384,
which is far beyond the number of all samples. In this case, the
model has a high risk of overfitting. The results are shown in
Table 3.

From Table 3, first noted that the performance of each
machine learning model with different k-mer features is
different. We can see that the best performance of SVM and
RF is achieved when k = 5 and 4, respectively. For LR and NN, the
highest ACC, Macro F-measure and AUC are achieved when k = 3,
6 and 3, respectively. Second, all evaluation metrics obtained by
DeepLncLoc are higher than other machine learning classifiers.
The ACC and Macro F-measure of DeepLncLoc are significantly
higher than the other machine learning methods. The AUC of
DeepLncLoc is slightly higher than the other machine learning
methods. Figure 3 plots the ROC curves of DeepLncLoc and
other machine learning methods with the highest AUC. As we
can see, DeepLncLoc outperforms traditional machine learning
models for four subcellular localizations (cytoplasm, nucleus,

exosome, cytosol). However, in ribsome, DeepLncLoc is higher
than SVM, RF and NN but slightly worse than LR, for which
DeepLncLoc achieves an AUC of 0.657, slightly lower than that
of LR (AUC = 0.675). In summary, these results indicate that
DeepLncLoc outperforms traditional machine learning models
with k-mer features for most subcellular localizations.

Comparison with different lncRNA representation
methods

In this study, we are focused on the lncRNA representation
for subcellular localization prediction of lncRNAs. To prove the
effectiveness of subsequence embedding, we compared the per-
formance of our proposed method and several popular lncRNA
representation methods. Specifically, we changed the represen-
tation method and kept the textCNN structure, and developed
some variant networks.

(i) One-hot + textCNN, it embeds A, C, G, U using one-hot
encoding, followed by textCNN structure to predict subcel-
lular localization.

(ii) Word2vec (1-mer) + textCNN, it embeds A, C, G, U using
word2vec, which are fed into textCNN structure to output
subcellular localization.

(iii) Word2vec (3-mer) + textCNN, it embeds 3-mer features
using word2vec, followed by textCNN structure to predict
subcellular localization.

In the three variant networks, considering that most of
sequences are shorter than 6000, the length of all lncRNA
sequences is normalized to 6000. Sequences longer than 6000 are
truncated and those shorter than 6000 are padded with zeros. We
used 5-fold CV and reported the classification performance in
Table 4. As we can see, with the help of subsequence embedding,
our method obtains the highest ACC, Macro F-measure and AUC,
which shows that our method consistently surpasses the other
representation methods. Taking AUC as an example, on average,
our method shows the AUC 4.7, 6.5, 3.9% higher than one-
hot + textCNN, word2vec (1-mer) + textCNN and word2vec (3-
mer) + textCNN, respectively. Besides, our method outperforms
the four variant networks on ACC and Macro F-measure. This
observation confirms the effectiveness of our method.

Comparison with existing predictors

The 5-fold CV was applied in our previous experiments. To fur-
ther evaluate the performance of DeepLncLoc in predicting the
subcellular localization of lncRNAs, we compared DeepLncLoc
with existing predictors by using a stand-alone test set.

We selected current predictors follow these criteria: (i) avail-
ability of web server or stand-alone version; (ii) input that only
needs lncRNA sequences and (iii) outputs that include predic-
tive scores for subcellular localization. Consequently, lncLocator
and iLoc-lncRNA satisfy these criteria. LncLocator can predict
5 subcellular localizations of lncRNAs, including nucleus, cyto-
plasm, cytosol, ribosome and exosome. iLoc-lncRNA can pre-
dict 4 subcellular localizations of lncRNAs, including nucleus,
cytoplasm, ribosome and exosome. We used the web servers
of lncLocator (available at http://www.csbio.sjtu.edu.cn/bioinf/
lncLocator/) and iLoc-lncRNA (available at http://lin-group.cn/se
rver/iLoc-LncRNA/download.php) for comparison.

We compared DeepLncLoc with the two predictors (lncLo-
cator and iLoc-lncRNA) by using an independent test set.
The test set was created from another lncRNA subcellular
localization database lncSLdb and recent literature, since
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Table 3. Performance of DeepLncLoc and different machine learning models with different k-mer features

Model ACC Macro F-measure AUC

k = 3 SVM 0.481 ± 0.021 0.224 ± 0.027 0.794 ± 0.008
RF 0.480 ± 0.042 0.305 ± 0.037 0.777 ± 0.011
LR 0.497 ± 0.025 0.267 ± 0.048 0.813 ± 0.004
NN 0.527 ± 0.032 0.324 ± 0.033 0.808 ± 0.009

k = 4 SVM 0.486 ± 0.010 0.223 ± 0.011 0.808 ± 0.007
RF 0.508 ± 0.024 0.327 ± 0.037 0.788 ± 0.009
LR 0.469 ± 0.029 0.289 ± 0.043 0.775 ± 0.017
NN 0.481 ± 0.023 0.325 ± 0.048 0.769 ± 0.015

k = 5 SVM 0.499 ± 0.013 0.271 ± 0.031 0.811 ± 0.006
RF 0.497 ± 0.019 0.282 ± 0.011 0.786 ± 0.014
LR 0.446 ± 0.023 0.290 ± 0.035 0.728 ± 0.020
NN 0.461 ± 0.048 0.321 ± 0.064 0.736 ± 0.018

k = 6 SVM 0.496 ± 0.040 0.245 ± 0.013 0.809 ± 0.015
RF 0.483 ± 0.044 0.280 ± 0.043 0.772 ± 0.020
LR 0.479 ± 0.033 0.335 ± 0.046 0.767 ± 0.012
NN 0.506 ± 0.039 0.345 ± 0.053 0.759 ± 0.021

DeepLncLoc 0.548 ± 0.038 0.421 ± 0.033 0.820 ± 0.017

Note: The best performance values are highlighted in bold.

Figure 3. The ROC curves of DeepLncLoc, SVM (k = 5), RF (k = 4), LR (k = 3) and NN (k = 3) for each class. (A) Cytoplasm, (B) Nucleus, (C) Exosome, (D) Ribosome, (E) Cytosol.

Table 4. Performance of subsequence embedding and different lncRNA representation methods

Representation method ACC Macro F-measure AUC

One-hot 0.481 ± 0.029 0.254 ± 0.048 0.783 ± 0.021
Word2vec (1-mer) 0.483 ± 0.045 0.314 ± 0.028 0.770 ± 0.011
Word2vec (3-mer) 0.504 ± 0.029 0.367 ± 0.033 0.789 ± 0.014
Subsequence embedding 0.548 ± 0.038 0.421 ± 0.033 0.820 ± 0.017

Note: The best performance values are highlighted in bold.

lncSLdb database only collects five subcellular localizations:
nucleus, chromosome, cytoplasm, nucleoplasm and ribosome,
and does not have records in the subcellular localization of
cytosol and exosome. Thus, we randomly selected some samples
from three subcellular localizations (nucleus, cytoplasm and
ribosome) in lncSLdb database. To obtain other samples from
the subcellular localization of cytosol and exosome, we searched

some recent literature in the PubMed database using the
following keywords: lncRNA and each subcellular localization,
and then obtained lncRNA sequences from NCBI database.
we used the cd-hit tool to remove the redundant sequences
with a cutoff of 90%. Last, the test set contains 20 samples
from cytoplasm, 20 samples from nucleus, 10 samples from
ribosome, 10 samples from cytosol and 7 samples from exosome
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Table 5. Comparison of the prediction performance of DeepLncLoc with lncLocator and iLoc-lncRNA on the test set

Predictor Macro Precision Macro Recall Macro F-measure ACC

lncLocator 0.282 0.310 0.283 0.373
iLoc-lncRNA 0.488 0.445 0.458 0.507
DeepLncLoc (5 classes) 0.702 0.524 0.563 0.537
DeepLncLoc (4 classes) 0.675 0.543 0.560 0.537

Table 6. Precision, recall and F-measure of DeepLncLoc and lncLocator for each class on the test set

Predictor lncLocator DeepLncLoc

Precision Recall F1 Precision Recall F1

Cytoplasm 0.484 0.750 0.588 0.778 0.350 0.483
Nucleus 0.308 0.200 0.242 0.400 0.800 0.533
Ribosome 0.333 0.200 0.250 0.500 0.400 0.444
Cytosol 0.286 0.400 0.333 0.833 0.500 0.625
Exosome 0.000 0.000 0.000 1.000 0.571 0.727

Note: F1 represents F-measure.

Table 7. Precision, recall and F-measure of DeepLncLoc and iLoc-lncRNA for each class on the test set

Predictor iLoc-lncRNA DeepLncLoc

Precision Recall F1 Precision Recall F1

Cytoplasm 0.553 0.700 0.618 0.800 0.400 0.533
Nucleus 0.467 0.350 0.400 0.400 0.800 0.533
Ribosome 0.333 0.300 0.316 0.500 0.400 0.444
Exosome 0.600 0.429 0.500 1.000 0.571 0.727

Note: F1 represents F-measure.

(see Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

The confusion matrices of DeepLncLoc and lncLocator
are shown in Supplementary Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/. Since
iLoc-lncRNA treats cytoplasm and cytosol as one category, it
only predicts four classes (nucleus, cytoplasm, ribosome and
exosome). To make the comparison fair, we treated cytoplasm
and cytosol as one category when we compared DeepLncLoc
with iLoc-lncRNA. The confusion matrices of DeepLncLoc
and iLoc-lncRNA are shown in Supplementary Figure S3, see
Supplementary Data available online at http://bib.oxfordjourna
ls.org/. In Supplementary Figures S2 and S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/, each row
represents the true class, whereas each column represents the
predicted class. The diagonal elements represent the number of
samples that are predicted correctly. Out of the 67 lncRNAs,
our method predicted correct subcellular localization for 36
of them, which is far more accurate than lncLocator (25) and
slightly higher than iLoc-lncRNA (34). The results of DeepLncLoc,
lncLocator and iLoc-lncRNA are reported in Table 5. Clearly, the
accuracy of DeepLncLoc is higher than lncLocator and iLoc-
lncRNA. The Macro Precision, Macro Recall and Macro F-measure
of DeepLncLoc (5 classes) are 0.702, 0.524 and 0.563, respectively,
which are significantly higher than those of lncLocator (0.282,
0.310 and 0.283). Similar results are observed when we compared
DeepLncLoc (4 classes) with iLoc-lncRNA. All results suggested
that the DeepLncloc may serve as a useful tool to predict
the subcellular localization of lncRNAs. We gave the detailed
prediction results of DeepLncLoc, lncLocator and iLoc-lncRNA

on the test set (see Supplementary Table S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/). Precision,
recall, F-measure of DeepLncLoc, lncLocator and iLoc-lncRNA
for each class on the test set are reported in Tables 6 and 7.
We observed that the F-measures of DeepLncLoc for nucleus,
ribosome, cytosol and exosome are higher than those of
lncLocator, and the F-measure of DeepLncLoc for cytoplasm
is lower than that of lncLocator. This phenomenon has been
observed when we compared DeepLncLoc with iLoc-lncRNA. In
addition, we also noted that none of samples in exosome have
been correctly recognized by lncLocator, which leads to very
bad prediction results for exosome. A possible explanation is
that there are too many samples of cytoplasm in the training
set of lncLocator and iLoc-lncRNA. The machine learning model
will naturally give more preference to cytoplasm, resulting in
a bad performance for the other classes. Thus, lncLocator and
iLoc-lncRNA tend to classify other subcellular localizations to
cytoplasm.

The effects of different species

In addition, we investigated whether the type of species has
an impact on classification results. The dataset covers six
different species and the species distribution of lncRNAs is
shown in Supplementary Table S4, see Supplementary Data
available online at http://bib.oxfordjournals.org/. Four species
only have one or two lncRNAs; thus, we only used two species
(Homo sapiens and Mus musculus) for analysis. Homo sapiens
group contains 461 lncRNAs and M. musculus group contains
391 samples. Supplementary Figure S4, see Supplementary Data
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available online at http://bib.oxfordjournals.org/, plots the
performance of DeepLncLoc on the two species. As shown in
this figure, the ACC and AUC of H. sapiens group are 0.547 and
0.823, respectively, which is slightly higher than those of M.
musculus group (0.503 and 0.774).

DeepLncLoc web server

A web server that implements DeepLncLoc is freely available
at http://bioinformatics.csu.edu.cn/DeepLncLoc/. DeepLncLoc
requires a lncRNA sequence with more than 200 and less than
100 000 nucleotides as input. Then, user click on the submit but-
ton to see the predicted results. The results have one table and
one sentence and will be shown on the screen of the computer.
The table has five columns and each column represents the
name of subcellular localization and corresponding probability.
Last, the final predicted subcellular localization is marked red
to show. Usually, DeepLncLoc takes less than 5 s to predict the
subcellular localization of a lncRNA sequence.

Conclusion
In this study, we proposed DeepLncLoc, an open-source
deep learning model, for predicting subcellular localization
of lncRNAs. Unlike many previous computational methods,
which use k-mer features to encode raw lncRNA sequences,
DeepLncLoc proposes a novel subsequence embedding method
to encode lncRNA sequences. Compared with previous studies,
DeepLncLoc has two novel design ideas: (i) it can keep the
sequence order information of lncRNA sequences by using
subsequence embedding; (ii) using textCNN can automatically
capture high-level features from the combination of the
patterns of all subsequences. Our extensive results showed
that DeepLncLoc outperforms all traditional machine learning
models with different k-mer features and existing state-of-the-
art predictors. We believe that DeepLncLoc can serve as a useful
tool to predict the subcellular localization of lncRNAs.

While our results are promising, several improvements can
still be made. We would like to point out the following limitations
of DeepLncLoc:

(i) Because the majority of lncRNAs in RNALocate database
only have one subcellular localization, thus, we only chose
the lncRNAs that only have one subcellular localization
for training and testing in this study. However, in real-
ity, many lncRNAs have multiple subcellular localizations.
Therefore, in future work, if we can collect more labeled
lncRNAs with multiple subcellular localizations, we can
expand the dataset to train a more powerful model.

(ii) We only used lncRNA sequence-based features in our
model for training and did not consider other biological
information. There are some useful features that could be
integrated for better predicting the subcellular localization
[37, 38]. For example, Gudenas et al. [24] used k-mer fea-
tures, RNA–binding motifs and genomic loci to predict the
subcellular localization of lncRNAs. Thus, in the future, we
plan to incorporate other biological information to deep
NNs.

(iii) To reduce computational cost and runtime, we did not use
a very complex deep learning model to extract features
and perform the classification task. With the development
of deep learning techniques, more and more powerful
network architecture will be proposed. Therefore, using

more powerful network structure to predict the subcellular
localization is a promising future direction [39].

(iv) Classification for the minority class of subcellular local-
ization (e.g. ribosome) is a challenging problem. This could
be due to two reasons. First, there are too few samples in
the minority class, which causes that our model cannot
capture the patterns of the minority class. Second, the
class distribution is imbalanced: the classifier tends to bias
to the majority class (e.g. nucleus) and hence leads to a loss
of predictive performance for the minority class [40].

The variable-length of lncRNA sequences is hard to address
in most existing computational methods. Even though our anal-
ysis was limited to predicting the subcellular localization of
lncRNAs, we obtained promising results. We believe that the
subsequence embedding method in DeepLncLoc can be used as a
general representation method of RNA and DNA sequences. It is
expected to be applied to other related variable-length sequence
problems, such as prediction of mRNA subcellular localization
[41], prediction of DNA N4-methylcytosine sites [42], RNA shape
prediction [43] and transcription factor binding site prediction
[44].

Key Points
• A novel deep learning architecture named DeepLncLoc

is developed to predict lncRNA subcellular localiza-
tion.

• A new subsequence embedding method is proposed to
keep the sequence order information.

• TextCNN is used to capture high-level features from
the combination of the patterns of all subsequences.

• Extensive experiments demonstrate that DeepLncLoc
achieves better performance than the existing meth-
ods.

• A user-friendly web server is established.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics and https://github.com/CSUBioGroup/DeepLncLoc.
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We provided a user-friendly web server that is freely
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