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Abstract

Background: Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important
topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to
handle this problem. However, traditional centrality methods cannot fully represent the topological features of
biological networks. In addition, identifying essential proteins is an imbalanced learning problem; but few current
shallow machine learning-based methods are designed to handle the imbalanced characteristics.

Results: We develop DeepEP based on a deep learning framework that uses the node2vec technique, multi-scale
convolutional neural networks and a sampling technique to identify essential proteins. In DeepEP, the node2vec
technique is applied to automatically learn topological and semantic features for each protein in protein-protein
interaction (PPI) network. Gene expression profiles are treated as images and multi-scale convolutional neural networks
are applied to extract their patterns. In addition, DeepEP uses a sampling method to alleviate the imbalanced
characteristics. The sampling method samples the same number of the majority and minority samples in a training
epoch, which is not biased to any class in training process. The experimental results show that DeepEP outperforms
traditional centrality methods. Moreover, DeepEP is better than shallow machine learning-based methods. Detailed
analyses show that the dense vectors which are generated by node2vec technique contribute a lot to the improved
performance. It is clear that the node2vec technique effectively captures the topological and semantic properties of PPI
network. The sampling method also improves the performance of identifying essential proteins.

Conclusion: We demonstrate that DeepEP improves the prediction performance by integrating multiple deep learning
techniques and a sampling method. DeepEP is more effective than existing methods.

Keywords: Deep learning, Identifying essential proteins, node2vec, Imbalanced learning, Protein-protein interaction
network, Multi-scale convolutional neural networks

Background
Essential proteins are indispensable for organisms and play
a very important role in maintaining cellular life [1, 2].
Determination of essential proteins not only helps us
understand the basic requirements of a cell at a molecular
level, but also helps identifying essential genes and finding
potential drug targets. Thus identifying essential proteins is
very important for researchers. There are several biological
experimental methods to identify essential proteins, such

as RNA interference [3], conditional knockout [4], and sin-
gle gene knockout [5]. But these methods require lots of
resources and time. Moreover, in some complex organ-
isms, these methods are not always applicable. Considering
these experimental constraints, it is appealing to develop
an accurate and effective computational approach for iden-
tifying essential proteins.
Existing computational approaches can be roughly di-

vided into two categories: centrality methods and shallow
machine learning-based methods. Jeong et al. [6] proposed
centrality-lethality rule which point out that the highly
connected proteins in a PPI network tend to be essential.
Based on this rule, a lot of centrality methods have been
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proposed [7–12]. Meanwhile, researchers began to inte-
grate more different useful biological information to iden-
tify essential proteins. A lot of different types of biological
information, such as gene expression profiles [13, 14], sub-
cellular localization information [15, 16], protein domains
[17], orthologous information [18, 19], GO annotation
and RNA-Seq data [20], have been used in various studies.
With the rapid development of high-throughput se-

quencing technique, we can easily get a lot of biological
data which provide a solid foundation of using machine
learning methods [21]. Generally, researchers develop a
machine learning method for prediction according to
the following steps: select some useful features (in this
case, topological features of a PPI network), construct
training and testing datasets, select an appropriate ma-
chine learning algorithm, and evaluate the performance
of the algorithm. A number of shallow machine
learning-based methods including support vector ma-
chine (SVM) [22], ensemble learning-based model [23],
Naïve Bayes [24], decision tree [25] and genetic algo-
rithm [26], are wildly used in identification of essential
proteins.
Both centrality methods and shallow machine learning-

based methods perform well, but each has some limita-
tions. For centrality methods, current methods predict
essential proteins by using a function to characterize the
topological features of PPI networks according to their
prior domain knowledge. But when the PPI network is
very complicated (such as thousands of proteins and tens
of thousands of protein-protein interactions), the function
cannot characterize the topological features of such a
complicated PPI network due to the output of the func-
tion is just a scalar [27, 28]. For shallow machine learning-
based methods, the first step is selecting features. They
usually select features by manual feature selection, which
may pose a theoretical limitation to explain why these
topological features are chosen in this study and depend
heavily on the prior knowledge of researchers. In addition,
identifying essential proteins is an imbalanced learning
problem due to the number of non-essential proteins is
much larger than the number of essential proteins. Data
imbalance usually hinders the performance of machine
learning methods, but few current shallow machine
learning-based methods are designed to handle the imbal-
anced learning in essential proteins prediction.
To tackle the above limitations and further improve

machine learning methods for identifying essential pro-
teins, we propose DeepEP, a deep learning framework
for identifying essential proteins. Recently, deep learning
methods have been applied to represent network infor-
mation and learn network topological features. They
achieve the state-of-the-art performance in lots of appli-
cations [29, 30]. Inspired by their success, we aim to in-
vestigate whether deep learning methods could achieve

notable improvements in the field of identifying essential
proteins as well. We believe that deep learning tech-
niques can be used to obtain better representation and
thus improve performance. In particular, we employ the
node2vec technique to encode a PPI network into a low-
dimensional space, and then learn a low-dimensional
dense vector for each protein in the PPI network. The
low-dimensional dense vector represents the topological
features of the corresponding protein. Using the node2-
vec technique has two advantages: (i) it provides a vector
representation for a protein, this vector has a richer rep-
resentation for topological features of a PPI network
than a scalar; (ii) the node2vec technique can automatic-
ally learn vector representations from a PPI network and
thus not require to choose some topological features. In
addition, we use a sampling method to alleviate the
imbalanced learning problem. The sampling method
samples the same number of the negative samples (non-
essential proteins) and positive samples (essential pro-
teins) in a training epoch, and thus ensures the results
are not biased to any class in training process. We use
this strategy in many training epochs and can make full
use of all non-essential proteins to train DeepEP with a
high probability. In addition to overcoming the above
limitations, DeepEP also uses other deep learning tech-
niques to improve prediction performance. In this study,
we use a PPI network dataset and gene expression pro-
files for training. For gene expression profiles, we trans-
form them to images and thus we can use some deep
learning techniques to better extract their patterns.
Multi-scale convolutional neural network (CNN) is a
newly developed deep learning architecture and is
powerful for pattern extraction. We utilize it to extract
more effective patterns of gene expression profiles.
To demonstrate the effectiveness of DeepEP, we per-

form extensive experiments on S. cerevisiae dataset. The
experimental results show that DeepEP achieves better
performance than traditional centrality methods and out-
performs the shallow machine learning-based methods.
To discover the vital element of DeepEP, we compare the
results obtained by node2vec technique with those of 6
central methods. Detailed ablation study shows that the
dense vectors which are generated by node2vec technique
contribute a lot to the improved performance. Addition-
ally, the sampling method also helps to improve the per-
formance of identifying essential proteins.

Materials and methods
Overview: DeepEP
We propose a novel deep learning framework, DeepEP,
for identifying essential proteins. Figure 1 illustrates the
architecture of DeepEP. It consists of two major mod-
ules: a feature extraction module and a classification
module. DeepEP accepts two kinds of biological datasets
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(PPI network dataset and gene expression profiles) as in-
puts. In the feature extraction module, the node2vec
technique is applied to automatically learn a dense vec-
tor for each protein in a PPI network to capture the se-
mantic and topological features of the biological
network. Gene expression profiles are treated as images,
and thus multi-scale CNN is applied to extract patterns.
After multi-scale convolution layer, the pooling layer is
used to perform dimension reduction. Then, the outputs
of each component (node2vec technique, multi-scale
CNN and pooling layer) are concatenated together as
the inputs for classification module. The classification
module consists of a fully connected layer and an output
layer. A rectified linear unit (ReLU) function is applied
to the fully connected layer as the activation function.
After the fully connected layer, another fully connected
layer with softmax activation function as output layer
predicts the final label of a protein. In addition to using
deep learning techniques, we also use a sampling
method to alleviate the imbalanced learning problem.
The details of the sampling method will be discussed in
sampling method section.

Network representation learning
As mentioned in the previous section, researchers need
to select some useful features to accomplish the develop-
ment of machine learning approach. Selecting PPI topo-
logical features is a very critical step in the study. Over
the past 10 years, researchers proposed many effective
computational methods to predict essential proteins
based on network topological features such as DC, BC,
CC, EC and so on. However, it is still difficult to select
some centrality indexes from them. Traditional feature
selection method used in identifying essential proteins is
manual feature selection. There are two disadvantages in
manual feature selection. The first one is that we have to

must lots of prior knowledge about essential proteins.
The second one is the selected topological feature is a
scalar which cannot represent the complex topological
features of a PPI network. To address the two issues, we
use network representation learning technique to obtain
biological features from a PPI network. Different from
manual feature selection, network representation learn-
ing can automatically learn a low-dimensional dense
vector for each protein in the biological network to rep-
resent the semantic and topological features. By using
this technique, a dense vector which has more powerful
representation than a scalar can be obtained and thus, it
can improve the performance [31].
Various network representation learning techniques

have been proposed in recent years [32]. Specifically, we
used the node2vec technique [33] which can learn dense
vector representations of vertexes in network based on
deep learning methods. It uses biased random walk algo-
rithm to generate a corpus which consists of every ver-
tex’s sequence for training, and aims to predict the
context of the given center node by maximizing the co-
occurrence likelihood function. The node2vec technique
can explore different types of networks and obtain richer
topological representation of the network than trad-
itional methods.

Sampling method
Data imbalance is a very common phenomenon in
real-world and we must take it into consideration in
machine learning field. The imbalance problem is en-
countered in prediction of essential proteins. The
classes that have more data instances are defined as
the majority class, while the ones with fewer instances
are the minority class. In the essential proteins data-
set we used, the essential proteins belong to the mi-
nority class and non-essential proteins belong to the

Fig. 1 The architecture of our deep learning framework for identifying essential proteins
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majority class. The imbalanced nature of data poses a
challenge for identifying essential proteins. Most trad-
itional machine learning methods usually bias towards
the majority class and hence lead to loss of predictive
performance for the minority class. Here our focus is
to identify the essential proteins out of many non-
essential ones, which requires us to tackle the prob-
lem of data imbalance effectively.
Previous studies have made great efforts to alleviate the

imbalanced data learning problem. Sampling methods are
the most wildly used and very effective methods [34–36].
However, we cannot direct use traditional sampling
methods (random oversampling and SMOTE) in DeepEP
due to the high consumption of computer resources. The
vector which is fed to the classification module is a high-
dimensional vector, and we do not want to synthesize any
new samples for training based on the raw high-
dimensional vector.
To alleviate the imbalanced learning problem, we use

a low-computational cost sampling method. M and N
denote the number of minority class samples (essential
proteins) and the number of majority class samples
(non-essential proteins), respectively. In each epoch, we
sample M instances from the majority class, and then
combine the M instances in the majority class and all in-
stances in the minority class as a new subset to train
DeepEP. We carry out this process k times to train Dee-
pEP. The main advantage of using this sampling method
is that it can ensure the results are not biased to any
class in training process. Figure 2 gives the illustration of
the sampling method.
In addition to the above advantage, the sampling

method can make full use of all instances in the majority

class of the raw dataset to train the deep learning model.
In the above sampling process, at each epoch, the prob-
ability that a non-essential protein instance is picked is
M/N. Therefore, for a specific non-essential protein, the
probability that a non-essential protein is not picked at
least once after k draws is:

p ¼ 1−M=Nð Þk ð1Þ
In order to make this probability as small as possible,

we can specify a threshold α to control it. If α is as small
as possible, we believe that we have sampled all majority
class instances of the raw dataset.

1−M=Nð Þk < α ð2Þ
In this study, we set α =0.001, the training times k can

be determined by Eq. (2).

Multi-scale architecture
In order to better capture the patterns of gene expres-
sion profiles, we treat them as images. A gene expression
profile has three successive metabolic cycles and each
cycle has 12 time points. It is natural to regard one gene
expression profile as an image with 1 channel * 3 rows *
12 columns, and thus some related techniques in com-
puter vision can be applied in feature extraction for es-
sential proteins prediction. Deep learning techniques
have been successfully applied in computer vision and
CNN is the most wildly used network architecture. CNN
uses convolutional filters to extract local features [37]
from raw images and multi-scale CNN uses different
kernels to extract local contextual features [38]. By using
different kernels, we obtain different information of

Fig. 2 Illustration of the used sampling method
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different spatial scales. The combination of the informa-
tion from the different scales can help to improve the
prediction task. Figure 1 shows the illustration of how a
gene expression profile is treated as an image.

Assessment metrics
In order to evaluate the performance of DeepEP and
other methods, in this study, we used six measures: ac-
curacy, precision, recall, F-measure, area under the curve
(AUC), and average precision (AP) score. Accuracy, pre-
cision, recall and F-measure are the most frequently
used metrics in machine learning classification, they are
defined as:

Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð3Þ

precision ¼ TP= TP þ FPð Þ ð4Þ

recall ¼ TP= TP þ FNð Þ ð5Þ

F−measure ¼ 2�precision�recall
precisionþ recall

ð6Þ

AUC is defined as the area under the Receiver Operat-
ing Characteristic (ROC) curve and ROC curve is a com-
monly used tool of visualizing performance of a classifier.
AP score is defined as the area under the precision-recall
(PR) curve and this assessment metric is widely used for
evaluating identification of essential proteins. Note that F-
measure, AUC, and AP score are more important than ac-
curacy, precision and recall in an imbalanced learning
problem due to they can offer a comprehensive assess-
ment of a machine learning classifier.

Datasets
We use three kinds of biological datasets in our experi-
ments: PPI network dataset, essential proteins dataset, and
gene expression profiles. The PPI network dataset is col-
lected from BioGRID database [39]. To eliminate the noise
of the dataset, we removed self-interactions and repeated
interactions. There are 5616 proteins and 52,833 protein-
protein interactions in the preprocessed PPI network data-
set. The essential proteins dataset is collected from the
four databases: MIPS [40], SGD [41], DEG [42], and
SGDP. We removed some overlap proteins and integrated
the information of the four databases. The preprocessed
dataset of essential proteins contains 1199 essential pro-
teins. The gene expression profiles dataset is collected
from GEO database (accession number: GSE3431). It con-
sists of 6776 gene products (proteins) and 36 samples.
There are three successive metabolic cycles and each cycle
has 12 time points.

Results and discussion
Implementation details
In our experiments, we first employ the node2vec tech-
nique to generate network representation vectors. Each
protein in PPI network is represented by a 64-dimensional
vector. Our deep learning framework is implemented by
Tensorflow which is a wildly used deep learning system
[43, 44]. Multi-scale CNN layers with kernel size 1, 3, and
5 are utilized to extract contextual features of gene expres-
sion profiles. By using multi-scale CNN layer we obtain 3
feature maps, each having 8 channels. These feature maps
are concatenated together as the extracted contextual fea-
ture vector. Then the output of multi-scale CNN layer is
fed to the maxpooling layer. After maxpooling layer, the
output vectors and network representation vectors gener-
ated by node2vec are concatenated, and then the
concatenated vector is fed to a fully connected layer which
has 312 nodes with ReLU activation function. To avoid
overfitting, a dropout rate of 0.1 is applied in DeepEP on
fully connected layer. Finally, we train our deep learning
framework using the Adam optimizer. The batch size is
set to 32 and initial learning rate is set to 0.001.

Comparison with other centrality methods
To demonstrate the effectiveness of DeepEP, we com-
pared it with several popular centrality methods for es-
sential proteins prediction. Eight centrality methods are
used for the comparison. These centrality methods are
used in following way. First, we compute the values of
proteins in PPI network using each centrality method.
Second, we rank their scores in descending order. Third,
the top 1185 proteins are selected as candidate essential
proteins. Last, we calculate precision, recall, F-measure
and accuracy according to the true labels of proteins.
The results of predicting essential proteins for each
compared methods are shown in Fig. 3. As shown in
Fig. 3, the results of DeepEP outperform the other

Fig. 3 Performance of DeepEP, DC, BC, CC, EC, NC, LAC, PeC,
and WDC
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centrality methods. For instance, the F-measure of Dee-
pEP achieves the highest value. Similarity, other assess-
ment metrics of DeepEP significantly are higher than
those of other centrality methods. These results demon-
strate the effectiveness of DeepEP for identifying essen-
tial proteins.

Comparison with shallow machine learning-based
methods
Machine learning-based methods are widely used in pre-
dicting essential proteins. SVM and ensemble learning-
based model are the two most commonly used shallow
machine learning-based methods. Besides, decision tree
and Naïve Bayes are very popular methods. Thus these
shallow machine learning methods (SVM, ensemble
learning-based model, decision tree, Naïve Bayes) are
compared to DeepEP. All of these shallow machine
learning methods are implemented by scikit-learn py-
thon library with default parameters. We shuffle all sam-
ples in raw dataset and then split raw dataset into
training dataset and testing dataset. Training dataset is
composed of 80% samples of raw dataset and the rest
samples constitute testing dataset. In both the training
and the testing datasets, the ratio of positive samples (es-
sential proteins) and negative samples (non-essential
proteins) remains the same. We use two different ways
to compare the machine learning-based methods. First,
we directly utilize raw training dataset for training and
testing on testing dataset. Second, we first apply the ran-
dom undersampling technique to draw M (number of
essential protein samples) samples from non-essential
protein set of training dataset. Then we combine the se-
lected non-essential proteins and all essential proteins
together as input data to train machine learning models.
The overall performance of all machine learning and
deep learning algorithms are evaluated using testing
dataset. To ensure a fair comparison, the input features
are the same.

Table 1 gives a comparison of the experimental results
of DeepEP with other shallow machine learning-based
methods using different ratios for training. As shown in
Table 1, we can see that the imbalanced nature of data-
set hampers the mining of machine learning methods. F-
measure and AUC increase from 0.21 and 0.72 (raw
dataset) to 0.23 and 0.75 (1:1) by using random under-
sampling technique for SVM, from 0.35 and 0.58 (raw
dataset) to 0.50 and 0.69 (1:1) for decision tree, from
0.27 and 0.70 (raw dataset) to 0.43 and 0.78 (1:1) for
random forest, from 0.42 and 0.73 (raw dataset) to 0.43
and 0.75 (1:1) for Adaboost, and from 0.42 and 0.70
(raw dataset) to 0.44 and 0.71 (1:1) for Naïve Bayes.
Other metrics of accuracy, precision and recall obtained
in this work are also improved by using random under-
sampling technique except for the accuracy and preci-
sion of Adaboost (raw dataset). Our results show that it
is necessary to consider the imbalanced nature of data-
set. In addition, from Table 1, we conclude that DeepEP
outperforms other machine learning-based methods. For
instance, the F-measure and AUC of DeepEP are 0.55
and 0.82, respectively. They are higher than those of
SVM (best performance: 0.23 and 0.75), decision tree
(best performance: 0.50 and 0.69), random forest (best
performance: 0.43 and 0.78), Adaboost (best perform-
ance: 0.43 and 0.75) and Naïve Bayes (best performance:
0.44 and 0.71).

Ablation study
Our experimental results show that DeepEP improves
the performances of identifying essential proteins and
outperforms other existing methods. To discover the
vital element of DeepEP, we perform experiments by
substituting node2vec technique with 6 common used
central indexes and the proposed sampling method with
different ratios of the positive samples to negative sam-
ples in our deep learning framework. In Table 2 we
compare the performances obtained by using node2vec

Table 1 Performance of DeepEP and other shallow machine learning–based methods with different ratios

Machine learning algorithms Accuracy Precision Recall F-measure AUC

SVM (raw dataset) 0.809 0.71 0.12 0.21 0.72

SVM (1:1) 0.813 0.75 0.14 0.23 0.75

Decision tree (raw dataset) 0.698 0.31 0.39 0.35 0.58

Decision tree (1:1) 0.781 0.47 0.54 0.50 0.69

Random forest (raw dataset) 0.809 0.63 0.17 0.27 0.70

Random forest (1:1) 0.843 0.74 0.31 0.43 0.78

Adaboost (raw dataset) 0.805 0.54 0.34 0.42 0.73

Adaboost (1:1) 0.785 0.47 0.39 0.43 0.75

Naïve Bayes (raw dataset) 0.750 0.40 0.44 0.42 0.70

Naïve Bayes (1:1) 0.773 0.41 0.46 0.44 0.71

DeepEP 0.826 0.58 0.52 0.55 0.82
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technique with the results of traditional central indexes
(DC, CC, EC, BC, NC, and LAC). We use a python li-
brary called networkx to calculate the six central indexes
of PPI network as the network representation of PPI.
The rest part of deep learning framework stays the same
settings. From Table 2, we can clearly see that node2vec
technique is the most effective component and therefore
is a crucial element in our deep learning framework. By
using node2vec technique, F-measure and AUC of Dee-
pEP are 0.552 and 0.816, respectively, which are better
than gene expression data with DC (0.315 and 0.701),
CC (0.318 and 0.667), EC (0.348 and 0.690), BC (0.296
and 0.657), NC (0.311 and 0.670), and LAC (0.302 and
0.672). Other metrics of accuracy, precision and recall
obtained by node2vec technique are 0.826, 0.584 and
0.524, respectively, which are the highest among all
methods. Figure 4 plots the ROC and PR curves of

DeepEP and comparing models which use gene expres-
sion profiles combined with different central indexes
(DC, CC, EC, BC, NC, and LAC). It is evident that Dee-
pEP has the best ROC curve and highest AUC value.
Moreover, the AP score of DeepEP is 0.61, which out-
performs DC (0.42), CC (0.37), EC (0.39), BC (0.36), NC
(0.37), and LAC (0.38). These results indicate that the
node2vec technique captures better network features
than traditional central indexes. A single central index of
PPI network makes use of a single scalar to represent
the complex topological features of a protein. Instead,
node2vec technique projects a PPI network to a low-
dimensional space and generates a dense vector for a
protein, and hence it can have richer representation of
network topology. In the node2vec technique, vertices
are mapped to a low-dimensional space of features
which maximizes the likelihood of network

Table 2 Performances of DeepEP and comparing models (using gene expression profiles combined with different central indexes
(DC, CC, EC, BC, NC, and LAC))

Model Accuracy Precision Recall F-measure AUC

Gene expression + DC 0.803 0.558 0.220 0.315 0.701

Gene expression + CC 0.782 0.446 0.247 0.318 0.667

Gene expression + EC 0.774 0.429 0.293 0.348 0.690

Gene expression + BC 0.789 0.474 0.215 0.296 0.657

Gene expression + NC 0.779 0.432 0.243 0.311 0.670

Gene expression + LAC 0.796 0.533 0.211 0.302 0.672

Gene expression + node2vec 0.826 0.584 0.524 0.552 0.816

Fig. 4 ROC and PR curves of DeepEP and models which use gene expression data combined with different central indexes (DC, CC, EC, BC, NC
and LAC)
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neighborhoods of vertices. It makes use of biased ran-
dom walk technique to efficiently explore diverse neigh-
borhoods and thus the diversity of connectivity patterns
in networks are captured, which is the key step to learn-
ing richer representations.
We tested the performance of models by using ran-

dom undersampling technique with different ratios. Ran-
dom undersampling technique is employed to obtain
different datasets which have different ratios of essential
proteins to non-essential proteins from raw training
dataset. Then different datasets are applied to train dif-
ferent deep learning framework. Specifically, we train
our models with different ratios (1:1, 1:1.5, 1:2, 1:2.5 and
1:3) and raw dataset and their performances are given in
Table 3. It can be seen that the sampling method is a
crucial element in DeepEP. By using the sampling
method, F-measure and AUC values obtained by Dee-
pEP are 0.552 and 0.816, respectively, which are better
than the ratio of 1:1 (0.508 and 0.783), ratio of 1:1.5

(0.507 and 0.785), ratio of 1:2 (0.510 and 0.791), ratio of
1:2.5 (0.511 and 0.783), ratio of 1:3 (0.482 and 0.788)
and using raw dataset (0.463 and 0.803). The ROC and
PR curves of comparing methods are shown in Fig. 5.
We can see that the ROC curve of DeepEP is slightly
higher than those of different ratios. In addition, we can
see that the AP score obtained by DeepEP is 0.61, which
is obviously higher than 1:1 (0.54), 1:1.5 (0.53), 1:2
(0.58), 1:2.5 (0.55), 1:3 (0.54) and raw dataset (0.58).
These two figures also demonstrate that DeepEP works
better than random undersampling sampling method
with different ratios due to the sampling method. Our
analysis shows that two main factors contribute to the
better performance of the sampling method. First, we
utilize a balanced subset for training in each training
epoch, thus our classifier does not bias to any class in
each training batch. Second, we make use of all non-
essential protein samples in high probability and hence,
we do not lose any information of raw dataset.

Table 3 Performance of DeepEP and comparing methods (models with different ratios (1:1, 1:1.5, 1:2, 1:2.5 and 1:3) and a model
which uses raw dataset for training)

Ratios (Essential VS non-essential) Accuracy Precision Recall F-measure AUC

1: 1 0.732 0.408 0.674 0.508 0.783

1: 1.5 0.758 0.437 0.605 0.507 0.785

1: 2 0.784 0.479 0.545 0.510 0.791

1: 2.5 0.796 0.504 0.518 0.511 0.783

1: 3 0.801 0.521 0.449 0.482 0.788

Raw dataset 0.832 0.675 0.353 0.463 0.803

Our method 0.826 0.584 0.524 0.552 0.816

Fig. 5 ROC and PR curves of DeepEP, our deep learning framework using different ratios of essential proteins to non-essential proteins (1: 1, 1:
1.5, 1: 2, 1: 2.5 and 1: 3), and using raw dataset. Note: RU refers to random undersampling
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Conclusions
We propose a new deep learning framework, DeepEP,
which is used for identifying essential proteins. DeepEP
aims to investigate whether deep learning and sampling
methods could achieve notable improvements for identi-
fying essential proteins. The topological features of PPI
networks are difficult captured by traditional methods.
DeepEP utilizes the node2vec technique to automatically
learn complex topological features from PPI network.
The node2vec can project the PPI network to low-
dimensional space and obtain the representation of pro-
teins with low-dimensional vectors, which allow DeepEP
to address the limitations of the traditional methods. In
addition, the essential proteins prediction is an imbal-
anced learning problem; a sampling method is applied in
DeepEP to handle this issue. The experimental results
obtained by DeepEP show that the proposed approach is
able to achieve the state-of-the-art performances that
are higher than those obtained by other centrality
methods and shallow machine learning-based methods.
To understand why DeepEP works well for identifying
essential proteins, we conduct studies by substituting
node2vec technique with 6 common used central in-
dexes and the proposed sampling method with different
ratios. Experimental results show that the dense vectors
which are generated by node2vec technique contribute a
lot to the improved performance. In addition, the sam-
pling method also helps to improve the performance of
deep learning framework.
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